TIPS 'N TECHNIQUES

HI1-RES SCRN
COMMAND

version of the Lo-Res SCRN command to your toolbox! It can
be used from Applesoft or from machine language.

ne of the handier features of

low resolution graphics is the

SCRN function. The state-

ment SCRN (X,Y) returns the color of the
block at the point X,Y. This function is
extremely useful for game programming.
But what if you want to make the big jump
from low resolution to high resolution
graphics? You lose the SCRN command be-
cause Applesoft BASIC doesn't have a Hi-
Res equivalent. Faced with this problem a
few months back, [ wrote HLLRES.SCRN,
a machine language utility that determines
whether a Hi-Res dot (pixel) is on or off.

USING HI-RES SCRN
To use HI.RES.SCRN (Listing 1), first
BLOAD it, then type:

CALL 768,x.,y

where x is the X-coordinate and y is the Y-
coordinate of the pixel to be checked. This
can be used from within an Applesoft pro-
gram or in immediate mode from the key-
board. The result is obtained by performing
a PEEK(242). If the result is one, then the

pixel specified by x and y is on; if it’s zero,
then the pixel is off.

If you wish to call this routine from a
machine language program, follow this
format:

1. Load the X-Register with the least sig-
nificant byte (LSB) of the X-coordinate.

2. Load the Y-Register with the most sig-
nificant byte (MSB) of the X-coordinate.

3. Load the Accumulator with the Y-
coordinate.

4. JSR $306.

When HILRES.SCRN is finished doing its
stuff, it leaves the result in location $F2.

' .hcn HIL.RES.SCRN

is finished doing its
stuff, it leaves the result
in location SF2. . .

A single pixel has no particular color, of
course. It can only be on or off. Color is
produced by the position and combination

of pixels on the Hi-Res screen, and there is
no way to directly read the color.

Listing 2 is a demonstration program that
shows how HI.RES.SCRN can be used in
a game. The program draws a box in the
center of the Hi-Res screen, and then ran-
domly bounces a dot in the box. When the
moving dot hits the border of the box, you
get a buzz. I call this routine ““The Angry
Bee."" I hope it gives you a few ideas for
future game programs.

ENTERING THE PROGRAMS

If you have an asscmbler, you may enter
the assembly language code in Listing 1 and
assemble it to produce the final program.
Alternatively, you may enter the machine
language code directly from the Monitor,
and then save the program with:

BSAVE HIL.RES.SCRN,A$300,L$40

Next, type in the Applesoft program in List-
ing 2 and save it with:
SAVE THE.ANGRY.BEE

For help with entering Nibble programs, sec
the Program Listings section at the end of
this issue.



HOW IT WORKS Listing 1 for Hi-Res SCRN Command
Much of the work of HI.RES.SCRN is HI.RES.SCRN

accomplished by using built-in ROM rou- 1 BessussscsssvovsTsssastasssn s ee
tines. Line 26 of Listing 1 jumps to 2« HI.RES SCRN ’
CHKCOM to check for a comma at - 2;,32’,‘:,,?{}:) 1987 g
TXTPTR. If one is not there, an error mes- 5 « BY MICROSPARC. INC. .
sage is returned 6« CONCORD. MA 01742 .
% A . ? B
Line 27 uses a ROM routine called 8 . Format: CALL 768.X,Y .
HFNS, which BASIC uses to get the coor- b ¢ e eidcudimle e
dinates for a Hi-Res plot for the HPLOT 11 +  of point to be checked -«
X.Y command. The value of X must be be- :g Tl T A o = "R EnE T
tween 0 and 279, and the value of Y must Y A R T OO T
be between 0 and 191. On return from this 15 ORG  $300
routine, the X-Register has the LSB of the S e -
X-coordinate, the Y-Register has the MSB 18 RESULT = $F2
of the X-coordinate, and the Accumulator 12 {’é:ﬁg“ = o
has the Y-coordinate. This is the format that 21 MSBOIV - SFF
is required when using the HPOSN routine. 22 CHKCOM = SDEBE
The first problem [ encountered was how gi -2 Ns°$“ = sl
to find the byte that corresponds to the dot 25 .
’ : 0300: 20 BE DE 26 JSR  CHKCOM : Checks for a comma.
to be Chc‘:ke‘:"’ You may know lhal.lhc H,I 0303: 20 89 F6 27 JSR  HFNS : Get X and Y coordinates
Res screen is not stored sequentially in 9306: 86 FE 28 STX  LSBOIV . Store LSB of X- coordinate.
memory. That is, line 125 on the Hi-Res :g::: :; :: 3 g: frs; :seoxv Eo sg::c "fﬂ o"‘ X- coordinate.
% 2 - POSN : |- rsor.
screen does not come afier linc 124 — it 9300 A2 08 . 31 ibx wses ARSI LSTRRISUEE0
comes after line 61. Fortunately, after the 030F: A9 07 32 LDA #7
jump to HPOSN in line 30, the address of  §313° hs fr 33 e
the left end of the screen display line upon 0315: 06 FE 5 TR ASL  LSBOIV . This is a routine that divides
ikt deerd poisy ppetrs i Sired . A1 B, B aveon | L i e
3 H an wi ¢ number a
HBASL?.ndHB_ASH (S26and $27). To ﬁpd B31A: 90 04 38 BCC  TRI . DIVISOR. The answer is In LSBDIV
the byte in the display linc that has the point 031C: £5 FD 39 SBC  DIVISOR ;  with the remainder in MSBDIV
to be checked, the X-coordinate is divided 9336 5 '© & i
by seven. Lines 31-43 are the division rou- 0321. 00 F2 42 ONE  TRO
tine. By addin ST 0323: 85 FF 43 STA  MSBDIV
ST the result of the division to 0325: A9 00 44 LDA 40 : Store '0' at RESULT
the address in HBASL and HBASH, the byte 0327 85 F2 a5 STA  RESULT
1o be checked is located. :;g: :: ;: :g tgx L:::;: o Get byte to be checked.
After clearing RESULT to zero in lines 0320 A4 FF a8 Loy |(tsao|v)'
44 and 45, the specific byte to be checked :g; 2: :2 03 ;: :z; 2::,"' : Clear byte to '@’ except for bit o
88 2 : 5 to be checked. End if bit is O
is loaded into the Accumulator. We are now 0334. A9 01 51 WA a1 : Bit is on, 30 store '1' in RESULT
down to figuring out which bit in the Accu- 0336. 85 F2 52 STA  RESULT
mulator is the one to be checked. - ot S ey 4 isaednet
The rcmaimigr of the division is stored in 033A: 02 55 DFE 300000010
MSBDIV, which now holds the bit to be 0338 04 56 DFE  %00600100
checked. If there is no remainder, then bit 9335 98 = e Sovelsees
0 is the bit to be checked. If one is the re- 033E: 20 59 DFB 500100000
mainder, then bit 1 is to be checked, and A33P=.49 60 OF8 5010000600
S0 on.
The remainder is used as an index to the --End assembly. 64 bytes, Errors: 0
data table (lines 51-60) to find the bit align- END OF USTING 4
ment with \yhich t0 AND the Accumulator. Listing 2 for Hi-Res SCRN Command
The AND instruction compares the corre- THE.ANGRY.BEE
sponding bits in the Accumulator to the bits 19; REN) Vseessessieieuatinisens
in the data table. The result of the AND R :
instruction is stored in the Accumulator. 50 RO - oY MICROSPARC. ING. -
The following is an example of two bytes BRI ey e Y s
being ANDed: 9 PRINT ooms %i?"BLOAD HI.RES.SCRN"
100 HGR HCOL! HOME : ONERR GOTO 220
Byte 1 - GIIEGIG 110 H:l'.g'l'"l)l5l:¢5ﬂ) 135,50 TO 140,100 TO 110
1
Byte 2 = 0010000 120 HCOLOR- 0: HPLOT 130.50 TO 133,50: HCOLOR=
"""""" 1381-130V-75A-IB—1
Resul t - 0910060 :;: ?:LLP;::'TZIZ:: : gHEN GOTO 190
S 5 - 160 X=X + A:Y=Y + B
If a bit is a one in both values, the resulting 170 HPLOT X.Y: HOOLOR= 9: HPLOT X - A.Y -8
bit is a one. If the bit of either value is a 180 GOTO 140
190 FOR C = 1 TO 5:S = PEEK ( - 16336): NEXT

zero, then the resulting bit is a zero.
The ANDing of the Accumulator has now

c

200 A = INT ( RND (1) « 3) - 1:B = INT ( RND
1) ¢ 3) -

210 GOTO 140

cleared all of the bits to zero, except the one 220 VTAB 23: HTAB 11: PRINT "FREEDOM AT LAST
to be checked. If it is a one, a one is stored 290 TEXE T HOME : VTAB 5: PRINT “THIS PROGRA
in RESULT. If the bit is a zero, RESULT 70 B ON THE SaWE DIk
remains zero, and the program is exited. SoltiEns

~



