HIl- RES
HOAUBINI

Feature Article

DOS 33 ProDOS
O (0]
0 0

Perform your own Hi-Res magic with this
machine language utility. Working with both
Hi-Res screens, it will let you invert colors,
shift the image in all four directions, merge
the two screens and much more.

by S. Scott Zimmerman, Ph.D.
1129 East 470 North
Orem, UT 84057

Do you ever get frustrated with Apple high-resolution graphics
and wish for a little magic? While creating graphics pictures,
do you ever feel you want to cast a spell to get out of a tight
spot? Do you ever fantasize about some graphics sleight-of-hand,
or dream of a near-impossible graphics stunt?

Well, then, ladies and gentlemen, here it is, for your graphics
enjoyment (ta-dum): HI-RES HOUDINI.

HI-RES HOUDINI can perform the following tricks:

* Scroll your Hi-Res picture left, right, up or down on the graph-
ics screen. This allows you to center a picture, to make room
on the edge of the screen for more graphics, or to change the
colors of the shapes.

¢ Invert the colors of your Hi-Res picturc. This converts the pic-
ture from white dots (or some other color) on a black background
to dots of the opposite color.

¢ Change the color bit of all the Hi-Res screen bytes. You can quick-
ly see what the picture looks like in other colors.

* Flip between the two Hi-Res screens.

¢ Merge two Hi-Res pictures into one. Just load one picture onto
Hi-Res screen 1, and the other onto screen 2, and, with the stroke
of a key — presto! — they become one.

® Transfer the picture on Hi-Res screen 1 to Hi-Res screen 2, and
vice versa.

® Copy a picture from one part of the screen to another.

.Of course, HI-RES HOUDINI is not really magic, and it cer-
tainly can't do everything you dream about. But it can do a few tricks
that you might find helpful and fun.

Commands
HI-RES HOUDINT is actually quite easy to use. When you BRUN
or CALL it, all of the commands are listed at the bottom of the
screen. The following is an explanation of each.

— (right arrow): Scroll the screen right one byte. This moves every-
thing on the Hi-Res screen to the right one byte (seven dots) and
places the original right-most column on the left border. In oth-
er words, the Hi-Res picture “‘wraps around” — whatever scrolls
off the right column of the screen, reappears on the left column
of the screen. Since dots in odd-numbered columns move to even-
numbered columns, the colors will change when this command
is executed.

“— (left arrow): Scroll the screen left one byte. This does the same
thing as the right arrow, except in the opposite direction.

> (“greater than™ sign) or . {period): Scroll the screen right one
bit, i.e., one pixel or one dot. This is similar to the right-arrow
scroll command, except that it scrolls the screen only one bit
rather than one byte. Since this changes odd-numbered columns
to even-numbered columns, the colors change when this com-
mand is executed.

< (“less than™ sign) or , (comma): Scroll the screen left one bit.
This is the same as the ‘>’ command, except in the opposite
direction.

A: Scroll the screen up. This moves everything on the Hi-Res screen
up one dot. It too has “wrap-around” — whatever scrolls off
the top of the screen, reappears at the bottom. Since the columns
in which the dots are located do not change, the colors of the
picture remain unchanged.

Z: Scroll the screen down. This does the same thing as A, but in
the opposite direction.

I: Invert the Hi-Res colors. This command clears all of the Hi-Res
bits that were set, and sets all the Hi-Res bits that were clear.
This has the effect of interchanging white and black, green and
blue, and violet and red. It lets you see your picture “black on
white™ rather than the usual “white on black.”

C: Change the color bit. This command clears all the Hi-Res color
bits (bit 7 of each byte) that were set, and sets all the Hi-Res
color bits that were clear. It has the effect of interchanging green
and red, and violet and blue. It also converts WHITEI to
WHITE2 and BLACKI1 to BLACK2 (and vice versa), but you
usually cannot tell that this has happened.

F: FULL/MIXED screen toggle. This command, when executed
while viewing Hi-Res page 1, switches from MIXED Hi-Res
graphics/text mode to FULL graphics mode, or vice versa. When
you first BRUN HI.RES.HOUDINI, you will be in MIXED
graphics/text mode, viewing the HI-RES HOUDINI commands
at the bottom of the screen. But when you first press F, the text
at the bottom of the screen will disappear and you will see the
full screen in graphics. When you press F again, the text at the
bottom of the screen will reappear. (This command does not work
if you are viewing Hi-Res page 2, since normal text cannot be
viewed from page 2.)

M: Merge Hi-Res pictures. This command overlays one Hi-Res
screen onto the other by performing an “‘exclusive-or”” with all
the bytes of the two screens. In other words, one of the Hi-Res
screens is XDRAWn onto the other. This has the effect of over-
laying one picture on top of the other, but in such a way that
if a page 1 dot (pixel) is “on” and is overlayed on a page 2 dot
that is also “‘on,” the result will be an “off” pixel. This allows
you to merge two pictures in one operation and then “unmerge”
them in a second operation, leaving the original picture un-
changed. If you are viewing Hi-Res page 1 when you press M,
Hi-Res page 2 will merge onto page 1 without affecting page 2.
If you are viewing page 2 when you press M, page 1 will merge
onto page 2, but page 1 will be unaffected.

CTRL-@: Clear the Hi-Res screen. This erases (to black) the
currently viewed Hi-Res screen. Note that on the Apple II Plus,
this command is a < CTRL> < SHIFT >P, and on the Apple
/fe, it is a < CTRL > < SHIFT > 2. (I like having to press three
keys to clear the screen; it helps avoid unfortunate mistakes.)

P: Flip the Hi-Res page. This command
switches from Hi-Res page 1 to Hi-Res
page 2, or vice versa. (If you haven't loaded
a graphics picture onto one or both of the
pages when you BRUN HI.RES.HOU-
DINI, you might see “garbage™ when view-
ing that particular Hi-Res page.
Alternatively, you will see a blank screen
if you have cleared the Hi-Res page with
an HGR or HGR2 command.)

Q: Quit. Pressing Q exits HI-RES HOUDINI
and returns you to a calling program or
Applesoft, depending on the state prior to
starting HI-RES HOUDINI. To re-enter the
program from Applesoft, type CALL
36608.

If you press any key other than a legal com-
mand key, you will hear an error “beep”
apprising you of your mistake.

Once you press a key and the command is
executed, HI-RES HOUDINI waits for you to
press another key and to execute the next com-
mand. In this way, you can quickly move your
picture from one location to another by suc-
cessively pressing one or more of the scroll-
ing keys. It also allows you to retract a
command. For example, if you scroll too far
left, you can immediately press the — (right
arrow) or > (“‘greater-than” sign) to move
back to the right. If you merge two Hi-Res pic-
tures and don't like what you see, you can im-
mediately press M again and “unmerge” the
pictures.

Magic Tricks
Now for a little magic. Here are three
“tricks” you can do with the above set of
commands:

Exchange the Hi-Res screens. Make sure
you have a picture on both Hi-Res screens,
then BRUN HI.RES.HOUDINI (or run the
HOUDINI.DRIVER program). Now, while
viewing page 1, press these keys in the follow-
ing order:

MPMPM

You can verify that this sequence did indeed
exchange the pictures by pressing P several
times to switch back and forth between page
1 and page 2.

Make several copies of a shape on one
screen. First, put the desired shape on Hi-Res
page 1, with nothing else on the screen. Sec-
ond, BRUN HI.RES.HOUDINI or, if it is
in memory, CALL 36608 (or run the driver

program). Third, press P to view page 2,
followed by < CTRL > @ to clear it. Fourth,
press M to merge page 1 onto page 2. Fifih,
using the scroll commands, move the shape
to a new location on page 2. Sixth, press P
to get back to page 1. And finally, press M
to merge page 2 onto page 1. The end result
is that the original shape is now found twice
on page 1, in two different locations. You can
repeat this operation as often as you like to
make multiple copies of the shape.

Create special effects. This is where your
imagination can run wild. Try this: put a Hi-
Res picture on page 1, press P to view page
2, <CTRL > @ to clear that page, then M
to merge (move) page 1 onto page 2. Now
scroll the screen one dot right or left by press-
ing > or <. Finally, press M to merge the
pictures. What you see depends on what was
there to begin with. If you don't like what you
see, just press M again, and you will
“unmerge” the pictures. Try another: With a
Hi-Res picture on one of the screens, type the
sequence I C > This has the effect of chang-
ing the background color (from black to white
or white to black) without changing the col-
ors of the shapes on the screen.

With these examples, you should be
prepared to invent some of your own magic.

Running HI-RES HOUDINI
Before you use HI-RES HOUDINI, you will
want to create a Hi-Res picture on one or both
of the Hi-Res screens. You can draw the pic-
ture with a commercially available graphics
utility or with a published program, such as

“Apple Artist” by Tony Dahbura (Nibble Vol.
2/No. 6), or “The Apple Art Gallery’ by
Edgar Young (Nibble Vol. 3/No. 6), or you
can simply draw your pictures with HPLOT,
DRAW, and/or XDRAW commands.

Once the object code of HI.RES.HOUDINI
is on disk, simply type BRUN HI.RES
.HOUDINI to execute the program. If HI
.RES.HOUDINI is already in memory, you
can run it by typing CALL 36608.

To simplify this process, you may want to
use the program, HOUDINI.DRIVER shown
in Listing 2. To use it, you will need to save
it to a disk that contains HI.RES.HOUDINI
and one or more picture files. The driver pro-
gram will first prompt you for the names of
the picture files to be loaded on Hi-Res pages
1 and 2, and then load them and start HI-RES
HOUDINI. When you quit HI-RES HOU-
DINI, the driver will then prompt you for con-
firmation, ask whether you want to start again
with different picture files, and give you an
opportunity to save the products of your labor
on disk.

Entering HI-RES HOUDINI

Listing 1 gives the assembly language
source code for HI.RES. HOUDINI. It was
written using macros, which simplify enter-
ing often-repeated code. If you have the BIG
MAC assembler from A.P.P.L.E. or the
Merlin assembler from Southwestern Data
Systems, type the code as it appears in the
listing, omitting the macro code lines in the
body of the program, i.c., type only the first
line of any group of lines having the same line
number. The macro code is also identified in
the program by comments beginning with
S

If your assembler does not have macro
capabilities, omit the section labeled “Define
MACROs.” Then, within the body of the code
listing, omit the lines with the “> > >
directive (which means ‘“‘put macro”), but in-
clude the actual macro coding, i.e., the lines
with the comments marked with *“;> >". In
other words, omit the first line in a group of
lines having the same line number, but include
all the other lines.

If you do not have an assembler, the
machine code can be entered directly into the
Monitor as explained in “A Welcome to New
Nibble Readers™ at the beginning of this issue.
After entering the hexadecimal data, type:

BSAVE HI.RES.HOUDINI, A$8F00, L$669

HOUDINI.DRIVER (Listing 2) is an
Applesoft program. After entering this pro-

gram save it to disk with the command:
SAVE HOUDINI.DRIVER

De-mystifying the Magic

The magician, Harry Houdini (1874-1926),
after whom this program is named, is famous
not only for his sleight-of-hand and his abili-
ty to escape from tight situations, but also for
his open explanations of how the tricks were
performed. Likewise, I have tried to organ-
ize and document the program HI.RES
.HOUDINI to remove some of the mystery
from programming with high-resolution
graphics.

The first two sections of the program define
the constants and variables. The program dif-
ferentiates between variables (lines 21-28) and
constants (lines 34-42) by using the different
pseudo-opcodes ‘EQU’ and =" A constant
is a symbol (name) that represents a number,
not an address; a variable is a symbol that
represents an address in memory. Of course
the assembler treats ‘EQU" and * =" identical-
ly, but the programmer needs to keep the dif-
ference between a constant and a variable in
mind at all times.

Lines 48-64 define the ROM addresses and
routines that will be used. The use of Apple-
soft or Monitor routines saves time, effort, and
memory. For example, the Applesoft zero-
page location $E6 (dec 230), called HPAGE,
contains a byte to indicate the current Hi-Res
screen. [f that location contains $20 (dec 32),
then the current Hi-Res screen is page 1 (the
starting address of page 1 is $2000; $20 is the
high-order byte of $2000). If HPAGE contains
$40 (dec 64), then the current Hi-Res screen
is page 2 (starting address $4000). This means
that Applesoft “looks™ at that location before
exccuting, for example, an HPLOT or DRAW
command to determine the proper Hi-Res
page. There is also a routine, HCLR, at $F3F2
(dec 62450) that clears the current Hi-Res
screen. So, in HI.RES.HOUDINI, when you
want to clear a screen (< CTRL> @), the pro-
gram simply sets HPAGE to the appropriate
value (see lines 678-683) and does a JSR
(Jump to SubRoutine) to HCLR.

For an explanation of the other Applesoft
or Monitor routines given in lines 48-64, con-
sult one of the references in the bibliography
at the end of this article.

Lines 66-110 define the macros, and have
already been explained.

In the first section of the actual program
(starting with line 116), the system is initial-
ized. First, the various graphics hardware
“switches” are accessed to select high-

resolution graphics, page 1, and mixed
graphics/text. (Many programmers use the
BIT command to access the switches, but LDA
or any other memory access command could
be used.)

Second, the Hi-Res page variable HRPAGE
is set to zero to indicate page | (it is set to
$20 when you flip to page 2 with the P com-
mand). I could have used the Applesoft loca-
tion HPAGE and set it to $20 to indicate page
1 and $40 to indicate page 2, but I prefer using
my own variable.

Next the FMFLAG (Full/Mixed flag) is set
for mixed graphics. This is used in the pro-
gram by the F command to allow toggling be-
tween full and mixed graphics mode.

Finally in the initialization section, the com-
mands are printed at the bottom of the screen.
[feel this is important. When I need a pro-
gram utility, I dislike having to search for the
documentation just to recall a few command
keys. I prefer having the commands listed with-
in the program, so they are ready for use
immediately.

“...whatever scrolls off the
right column of the screen,
reappears on the left
column...”’

The next section of the program is the
Keyboard Command Input. In a straightfor-
ward way, the program checks all the possi-
ble keyboard commands, and jumps to the
appropriate location if a correct key is pressed.
If a wrong command is given, the program
sounds the error “beep” (line 185) and jumps
back (line 186) to check for another key press.
If Q is pressed, the program quits (lines
188-191) by flipping to page 1, running the
Applesoft subroutine SETTXT (which is
simply the Applesoft TEXT command), and
then exiting with an RTS to the status of the
Apple prior to running the program, whether
that is Applesoft, the Monitor, or a calling
program.

The rest of the program contains a section
for each of the keyboard input commands.
They make use of the Hi-Res screen row ad-
dresses given near the end of the listing. This
data gives the starting address of every line
of Hi-Res page 1. Addresses for Hi-Res page
2 are obtained by adding $20 to the high-order

byte value. With this data table, the manipula-
tions of the Hi-Res screen bytes can be carried
outin a fast and simple manner. Most arcade
games include a similar table. In fact. you may
want to save the data table as a separate file
for use in other graphics programs.

Headings for each section and comments on
each line should help you understand most of
the program code.

Color Capers

As you know. the Apple uses bit-mapped
graphics. This means that when the computer
is in graphics mode, the Apple scans a specific
region of memory (S2000-$3FFF or
$4000-$SFFF) for “on” or “off™" bits within
cach byte. If the bit is “on™ (that is, it has a
value of one), a dot appears on the screen at
a location corresponding to the memory loca-
tion of the bit. If the bit is “off™ (has a value
of zero), no dot appears on the screen for that
location. Page 21 of the Apple II Reference
Manual (page 34 of the Apple //e Reference
Manual) gives the map of the high-resolution
graphics screen, showing which memory byte
corresponds to which graphics screen location.

The system gets more complicated when
color is involved. What [have said about
graphics bits in the preceding paragraph
applies only to bits 0 through 6 of each byte.
Bit 7 is the color bit. It does not correspond
to an “on™ or “off” pixel on the graphics
screen, but rather affects the color of each bit
within its byte. When the color bit is clear (has
a value of zero), the pixels (corresponding to
the bits within that byte) that are found in even
columns on the Hi-Res screen (X = 0,2, 4...)
are violet in color, and the pixels found in odd
columns (X = 1, 3. 5...) are green. When the
color bit is set (has a value of one), the pixels
in even columns are blue and the pixels in odd
columns are red. Whenever two adjacent dots
are “‘on,” the color is white (WHITEI if the
color bit is clear: WHITE? if the color bit is
set).

So now we get down to the problem in HI-
RES HOUDINI. When the Hi-Res screen is
scrolled by one dot, what happens to the color
bit? Let's take two adjacent bytes. The one on
the left we'll call byte A, and the one on the
right we'll call byte B. If A has the color bit
set and B has the color bit clear, what happens
to the color bit when you press *>" in HI-
RES HOUDINTI to scroll the screen one pixel
to the right? And when a pixel from byte A
moves into byte B, what happens to its color?

HI-RES HOUDINI handles these problems
in the following way: When the graphics bits

are shifted from byte A to B, the color bit goes
into B if, first, an “on™ pixel actually moves
from A to B, and second, if B had no pixels
turned “on.” If, on the other hand, no dot is
shifted from A into B, obviously B keeps its
own color bit; or if B still has some of its
original pixcls turned on after the shift, it again
keeps its own color bit.

This algorithm (or any algorithm I can think
of) is not without its problems. In adventure-
game jargon, we can say that the “color align-
ment is chaotic good.” It’s not “evil™ since it's
not out to injure us (although we may
sometimes think otherwise when program-
ming Apple graphics). But it’s not “lawful”
either; it is ‘‘chaotic™ in the sense that some
single-dot scrolls will cause unexpected color
changes in some of the shapes. This is
especially apt to occur when scrolling colored
shapes on a white background. (Incidentally,
scrolling a full byte at a time with the arrow
commands avoids unexpecied color changes,
although it does cause some expected oncs.)

The moral to all this, I guess, is that you
have to be careful how you apply your magic.

“

...the commands are listed
within the program, so they
are ready for use
immediately.”

Customization

If you don't like the keys I have chosen for
the commands, change them! For example,
you might not like the purposefully difficult
method for clearing the Hi-Res screen, but
would rather just press E for erase. To do this,
change line 183 to CMP #"E". This revision
is enough to change the command itself, al-
though the message in the text window at the
bottom of the screen will be wrong. To change
the message. revise line 732 from CTRL- to
E. You will also have to omit lines 140-142,
which were required for printing an inverse
sentinel (@) on the Apple screen; this special
code was required since the ASCII code for
inverse @ is zero, which is also the value us-
cd by the MESSAGE macro to indicate end-
of-message.

Another modification you might want to
make is in the method used to merge the two
graphics screens. The program was written to
do an exclusive-or (analogous to the Apple-
soft XDRAW command) rather than a logical-
or (analogous to the DRAW command). If you
want the merge to DRAW one picture on top
of the other, change line 623 from EOR to
ORA.

If you don't feel you will use one or more
of the commands, and you don’t want to type
in the corresponding section of code, just leave
it out. The various sections are clearly
identified.

If you know assembly language, you can
obviously add other sections and other com-
mands. For example, a simple addition would
be commands for scrolling without wrap-
around. They would be used for quickly
erasing parts of the screen. The coding would
be the same as for other scrolls, except that,
rather than restoring the last row or column
to the first, they would just erase the first row
or column. Anything scrolled off the screen
would be gone forever.

Summary
HI-RES HOUDINI is & utility that will help
you solve graphics problems or just have fun.
With proper use of its simple commands. you
will be able to perform your own graphics
magic.

DNV L WN =~

110
111
112
113
114
115

LISTING 1: HI.RES.HOUDINI

et EeNE A A ARSI ARISBIARIKREIININEEAONNSO RSN RE Y
.

HI.RES.HOUDINI .

.

by S. Scott Zimmerman *
Copyright (c) 1984 -
by MicroSparc, Inc. "
Concord, MA @1742 -
*

N

B

Assembler:. BIG MAC

PR I T B TR S

B R T

ORG $8FOO ,Up by DOS (dec 36608)
oA A R B R A AR R S A SR RO e
« Variables %

B L T T

FMFLAG EQU ©
COLORBIT EQU 1
NEWBYTE EQU 2
HRPAGE EQU $19

;FULL/MIXED flag

:To save the color bit
;Temp data storage
Which hi-res page
OLDPTR EQU S1A ;Points to old HR byte
NEWPTR EQU S$1C ;Points to new HR byte
ROW EQU S1E ;Current row number

coL EQU SI1F ;Current column number
B L L LL L L
+ Constants: .
cesemisseinessearss B e S e L
RIT_ARROW = $95 JASCII for right arrow
LFT_ARROW = $88 (ASCI1 for left arrow
UP_A = TA" (ASCI1 for A

DOWN_Z = i e ;ASCI1 for Z

CTRL_e = $80 (ASCI1 for CTRL-2

NUNMCOL - 39 :Number of byte columns
TOP_ROW =] ;Top row is @th row
BOT_ROW = 191 ;Bottom row is 191

B N S A N T T L L
» RON addresses and routines .
B R T L s L e
CH EQU s24 ;Horizontal TAB value

HPAGE EQU SE6
APLSOFT EQU $3D0
KEYBD EQU $CO00
STROBE EQU sSCPl0

iHi-res page indicator
;Enter Applesoft
.Keyboard input location
.Clear keyboard input

SHOW EQU sC@50 :Display GRAPHICS screen
FULLSCRN EQU $C@52 ;Display FULL graphics
MXEDSCRN EQU $SC@53 :Display MIXED graph/text
FLIPL EQU $C@54 :Display screen #1

FLIP2 EQU 3$CO55 ;Display screen #2
HRSCRN EQU $C@57 ;Display Hi-Res graphics
HCLR EQU $F3F2 ;Clear hi-res page

SETTXT EQU S$FB39 :Set TEXT mode
TABV EQU SFBS5B :Vertical TAB routine
HOME EQU SFCS8 .Clear the text screen

cout EQU SFDED .Character output routine
BELL EQU SFF3A ,Sounds the ‘'beep

P P O A e R S R T L X L L L
+ Define of MACROs: =

T e
. -
« This section contains macros, used to simplify «
« entry of commonly used code |ines 1f your -
« assembler does not support macros, leave out =
« this section: then. in the main body of the -
« code, omit the |ines with the >>> directive .
= and insert |ines containing the ;>> comments «
« If your assembler supports macros, type this =
« section. Then in the main body, type the -
« lines with the >>> directive, but omit lines =
« with the :>> comments. >
. N
. .

B Y

Do a ;Do not assemble macros
SETPTR NAC 1>> Sets a pointer
LDA YLOW, X :>> Get the Hi-Res LOB
STA 11 i>> Store in pointer
CLC i>> Prepare for addition
LDA YHIGH.X .>> Get the Hi-Res HOB
ADC HRPAGE 1>> Add for hi-res page
STA]11+1 >> And store it too
<<< :>> End of macro
TABXY MAC ;>> Move cursor to X.Y
LDA #]1 ;>> Get the X value
STA CH ,>> Store it
LDA #]2 ;>> Get the Y value
JSR TABV :>> Go set vertical tab
<<< :>> End of macro
MESSAGE WMAC ;>> Send a message
LDY #9 :>> Set the index
MSGLOOP LDA 1]1.,Y ;>> Get a character
BEQ MEND :>> Is it done?
JSR COUT ;>> No, send character
INY ;>> Go to next character
BNE MSGLOOP 1>> (always branch)
MEND <<< ;>> End of macro
FIN :End macros. start assem
B T L AP
« Initialize s

T e TR T

8F00:

8FO3

8FO6 .

8FB9

8FBC :
8FOF .
8F11.
8F13:

8F15:

8F18:
8F1A:
8F1C:
8F1E:

8F21 .
8F23:
8F26:
8F28:
8F28:
8F2C:

8F2E:
8F30:

8F32

8F34:

B8F37:

8F39
8F3C
8F3E

8Fa2:

28

A9
85
A9
20

. A9
: 85

.20

Bibliography

1. Apple Computer, Inc., Apple Il Monitors
Peeled, 1981, especially Chapter Two. This
book is a must for those using Monitor
routines from assembly language.
2. Apple Computer, Inc., Apple Il Reference
Manual, 199, pp. 19-21, 61-62, and 130-131.
You would be amazed at what you can learn
from this manual, which has been sitting
there, mostly ignored and unopened, right
on your desk all this time.
3. Crossley, John, “Applesoft Internal Entry
Points,” originally published in Apple
Orchard:; reprinted in All About Applesoft.
A.PP.L.E., 1982. A classic article on the
use of ROM routines.
4. Luebbert, William F., Whar's Where in the
Apple (with the new user's guide), 1982.
5. So, Edward C., “Hi-Res Full Scroll.” Call-
A.PPL.E., Vol. 5/No. 2, February 1982,
pp. 23-34. This was a source of inspiration,
although HI-RES HOUDINI uses a dif-
ferent algorithm and of course has many
other commands.
57 C6 116 BIT HRSCRN ;Select hi-res screen
54 C6 117 BIT FLIP1 ‘Make sure 1t's page 1
53 C8 118 BIT MXEDSCRN :Make it mixed GR/TEXT
50 C6 119 BIT SHOW :Now show the hi-res scrn
10 Co 120 BIT STROBE :Clear keyboard input
o0 121 LDA #0Q :Make default
19 122 STA HRPAGE :Hi-res page 1
20 123 STA FMFLAG :Set flag to mixed GR
124
125 « Print keyboard commands at bottom of screen
126
58 FC 127 JSR HOME :Clear the screen
128 >>> TABXY.9.20
20 128 LDA #9 ,>> Get the X value
24 128 STA CH .>> Store 1t
14 128 LDA #20 .>> Get the Y value
58 FB 128 JSR TABV :>> Go set vertical tab
128 << :>> End of macro
129 >>> MESSAGE . SCLCMNDS
00 129 LDY #@ :>> Set the index
D6 94 129 MSGLOOP LDA *SCLCMNDS,Y ;>> Get a character
06 129 BEQ MEND ;>> Is it done?
ED FD 129 JSR COUT \>> No. send character
129 INY ;>> Go to next character
F5 129 BNE MSGLOOP :>> (always branch)
129 MEND <<< >> End of macro
130 >>> TABXY.@;21
20 130 LDA #@ .>> Get the X value
24 130 STA CH ;>> Store it
15 13@ LDA #21 ;>> Get the Y value
58 FB 13¢ JSR TABV ,>> Go set vertical tab
138 IS ,>> End of macro
131 >>> MESSAGE.INV' I
09 131 LDY #@ .>> Set the index
FA 94 131 MSGLOOP LDA INV: 1.V .>> Get a character
26 131 BEQ MEND :>> Is 1t done?
ED FD 131 JSR CouT :>> No, send character
131 INY .>> Go to next character
F5 131 BNE MSGLOOP .>> (always branch)
131 MEND <<< .>> End of macro
132 >>> TABXY.20,21
14 132 LDA #20 1>> Get the X value
24 132 STA CH .>> Store it
15 132 LDA 421 1>> Get the Y value
58 FB 132 JSR TABV i>> Go set vertical tab
132 <<< ,>> End of macro
133 >>> MESSAGE . CHGBIT.C
00 133 LDY #0 :>> Set the index
0B 95 133 MSGLOOP LDA CHGBIT:C.Y :>> Get a character
26 133 BEQ MEND .>> Is it done?
ED FD 133 JSR CouT .>> No, send character
133 INY :>> Go to next character
F5 133 BNE MSGLOOP :>> (always branch)
133 MEND <<< :>> End of macro
134 >>> TABXY.90.22
29 134 LDA #@ ;>> Get the X value
24 134 STA CH :>> Store |t
16 134 LDA #22 ;>> Get the Y value
5B FB 134 JSR TABV ;>> Go set vertical tab
134 <<< .>> End of macro

8F63:
8F65:
8F68.
8F6A:
8F6D:
8F6E:

8F70:
8F72:
8F74:
8F76:

8F79:
8F7B:
8F7E:
8F80:
8F83:
8F84:

8F86

8F88:
8FBA:

8F8C

8F8F:
8F91:
B8F94:
8F96:

8F99
8F9A

8F9C:
8F9E:
BFAD.
BFA2:

8FAS

8FA7:

8FAA
8FAC

8FAE:
BFBO:

8FB3
8FB5

8FB8:
8FBA:

8FBD

8FBE:

8FCO
8FC2
8FC4
8FC6

8FCQ
8FCB
8FCE
8FDO
8FD3
8FD4

8FD6
8FD9

8FDB:
8FDE .

8FEQ
8FE2
8FE4
8FE6
8FE8
8FEA
8FEC
8FEE

8FFO:

8FF2
8FF4

8FF6:

AD

Fo
20

Ag

212}

95

FD

F8

FD

FB

95
FD

FB

FO

FB

95

FD

FB8

95
FD

co
Co

140
140
140
140
141
142
143
143
143
143
143
143
144
144
144
144
144
144
144
144
145
145
145
145
145
145

146
146
146
146
146
146
146
147
148
149
159
151
152
153
154
185
156
157
158
159
162
161
162
163
164
165
166
167

NSGLOOP

MEND

MSGLOOP

MEND <<<
55>
LDA
STA
LDA
JSK
<<<

MSGLOOP A

LD,
BE

MEND <<<

MSGLOOP
MEND

JSR
<<<
>>>
LDY
MSGLOOP LDA
BEQ
JSR
INY
ENE
<<<

MEND

MESSAGE FLMX:F

Ho P>
FLMX F.Y 1>
MEND >>
couT 13>

i>>
MSGLOOP >
15>
TABXY 20,22
K20 B>
CH g
H22 >
TABV s>
15>
MESSAGE MERGE M

v

#0 i>>
MERGE M Y >>
MEND >>
couT L

MSGLOOP 5>

>
TABXY.0.23
#0 :

v
v

CH P>
423 1>

1ABV V>

i>>
MESSAGE CLEAR:@
HO V>
CLEAR & .Y

>
MEND >
couTt 1>

MSGLOOP >
>>
TABXY 523
#S >
CH >>
#23 >
TABV 1>
i>>
#$Q iGet
couT 1And
TABXY 20.23
720 i3>
CH i>>
n23 P>
TABV 5>

i>>
MESSAGE PAGE : P

#0 >>
PAGE P.Y >>
MEND >>
couT >>

MSGLOOP I>>
TABXY.33.23
#33
CH >>
#23 55
TABV 1>>
>>
MESSAGE QUIT Q
"o
QUIT Q.Y >
MEND 1>>
couT >>

MSGLOOP | »»

ettseesmcrssatastscatinnsanss

= Keyboard command

Set the index

Get a character

Is It done?

No. send character
Go to next character
(always branch)

End of macro

Get the X value
Store 1t

Get the Y value
Go set vertical
End of macro

tab

Set the index

Ge1 a character

Is it done?

No, send character
Go to next character
(always branch)

End of macro

Get the X value
Store it

Get the Y value
Go set vertical
End of macro
Set the index
Get a character
Is it done?

No. send character
Go to next character
(always branch)

End of macro

tab

Get the X value
Store it

Get the Y value
Ge set vertical
End of macro
inverse @ (hex
print it

tab

20)

Get the X value
Store it

Get the Y value
Go set vertical
End of macro

tab

Set the index

Get a character
Is it done?
No, send character

Go to next character
(always branch)
End of macro

Get the X value
Store it

Get the Y value
Go set vertical
End of macro

tab

Set the index

Get a character

Is 1t done?

No, send character
Go to mext character
(always branch)

End of macro

R R R R R T R}

KEYIN LDA
BPL
BIT
CMP
BEQ
CMP
BEQ
CHP
BEQ
cue
BEQ
cmP
BEQ
CHP
BEQ
cuP

Input
KEYBOD ‘Has
KEYIN No,
STROBE Yes
#Q" 1Qui
QuIT Yes
#UP_A :Ser
SCRLUP iYes
#DOWN_Z Scr
SCRLOWN .Yes
HRIT_ARROW Scr
SCRLRIT Yes
HLFT_ARROW Scr
SCRLLFT Yes
H>" Mov
MOVERIGHT VYes
[N Mov

a key been pressed?
go check agalin
. clear strove
T
so quit now
oll up?
Bo scroll up
oll down?
go scroll down
oll right?
go scroll right
oll left?
go scroll left
e right one pixel?
go do It
e right one pixel?

BFF8.

8FFA

8FFC:
8FFE:
9000 :
9002
9004 :
9096 :
9008 ;
900A
900C:
900E :
9010

9812

9814 .

9816
9018
901A

9010:

9020 :
9023
9026
9029

902A:
9@20D:
9030 :
9@33:
9036
9039 :
9@3C:
903F :
9042
9045
9048 :
9048:

904E

2050

9052
9054 ;

9056 .

9058
9058
985D
905E
9961

9063

9065 :

9068 .

906A

906C .

996F

9971 :
9072
9075
9077 -

9679
9978 :

9070

9080
9082
9083:
9086 :
9088

AE
CE
58
EC
87
1D
8A
AC
CE
Fe
2E
49

56
1A

16
1B

AE

00
1E

56
1C
16
1D

1E
1E

56
1A

16
18

4E
1E

56
1C

16
19
1D

1E
1E

56
1A

16
19
1B

FF
8F

co
FC

93

94

93

94

93

94

91

93

94

93

94

239
240
24]
242
242
242
242
242
242
242

243
244
245
246
247
248

JUP
QuIiT BIT
JSR
JSR
RTS

= JUMP table:

SCRLUP JWP
SCRLDWN JupP
SCRLRIT JupP
SCRLLFT JupP
MOVERIGHT JMP
MOVELEFT JuWP
INVERSE JWP
CHHCLBIT JumP
PAGECHNG JMP
FULLMXD JuP
PICMERGE JMP
CLEARSCRN JMP

MOVERIGHT :Yes, go move right

#e" Move left one pixel?

MOVELEFT :Yes. go move left

s ‘Move left one pixel?

MOVELEFT .Yes, go move left

S0 .Set inverse?

lNVERSF :Yes. go set inverse

#e? iChange the color bit?
iYes, go change it

CHHCLBIT
#'P" :Change the hi-res page?

PAGECHNG :Yes, go change page
H F" Toggle FULL/MIXED screen?
FULLMXD .Yes, go toggle it
#M" Merge page 1 into page 27
PICMERGE :Yes. go merge
#CTRL_@ ;Clear screen?
CLEARSCRN ;Yes, go clear it
BELL Wrong key: sound bell
KEYIN :Go check for right key
FLIP1 .Set page 1
SETTXT .Go beck to text mode
HOME iClear the screen

(End of HIRES HELPER
SCROLL_UP :Go scrol | up
SCROLL_DOWN :Go scrol | down
SCROLL_RIGHT iGo scroll right
SCROLL_LEFT iGo scrol | left
MOVE_RIGHT ;Go move pixel right
MOVE_LEFT :Go move pixel left
SET_INVERSE ;Go 1nverse colors
CHG_COLOR_BIT 1Go chenge color bit
CHANGE _PAGE :Go change page
TOGGL_FULLMXD :Go toggle full/mixd
PICTURE _MERGE ,Go merge pictures

CLEAR_SCREEN :Go clear screen

DR P S

« Scroll up:

.

SCROLL_UP
« Store top

LDA
STA
LDA
STA

LDX
>3>
LDA
STA
cLe
LDA
ADC
STA
<<<

JSR

= Move the next

LDX
STX

>
LDA
STA
CLC
LDA
ADC
STA
<<<
INC
LDX
25>
LDA
STA
cLe
LDA
ADC
STA
<<<
UP LOOP JSR
L.DX
>>>
LDA
STA
cLc
LDA
ADC
STA
<<
INC
LDX
>>>
LDA
STA
cLC
LDA
ADC
STA
<<<

CPX
BCC

« Restore old

in buffer for

later restore at bottom:

#<BUFFER Get the buffer LOB
NEWPTR 1Set new location LOB
#>BUFFER :Get the buffer HOB
NEWPTR+1 iAnd save it in pointer
#TOP_ROW ;Set old location to
SETPTR.OLDPTR top row
YLOW X :>> Get the Hi-Res LOB
OLDPTR .>> Store in pointer

.>> Prepare for addition
YHIGH, X :>> Get the Hi-Res HOB
HRPAGE :>> Add for hi-res page
OLDPTR+1 .>> And store it too

:>> End of macro
MOVEROW :Go move the row

rows up:

HTOP_ROW iStart at top of row
ROW :Save in row counter
SETPTR.NEWPTR ;Set pntr to new row
YLOW, X ,>> Get the Hi-Res LOB
NEWPTR ,>> Store in pointer

.>> Prepare for addition
YHIGH X :>> Get the Hi-Res HOB
HRPAGE .>> Add for hi-res page
NEWPTR+1 .>> And store it too

:>> End of macro
ROW :Go to next row
ROW ;Put counter in register

SETPTR.OLDPTR .Set pntr to old row

YLOW. X .>> Get the Hi-Res LOB
OLDPTR >> Store in pointer

>> Prepare for addition
YHIGH, X >> Get the H|-Res HOB
HRPAGE (>> Add for hi-res page
OLDPTR+1 >> And store it too

;>> End of macro
MOVEROW .Go move the row

Get counter again
SETPTR NEWPTR :Set new oointer

YLOW, X :>> Get the Hi-Res LOB
NEWPTR ;>> Store in pointer
;>> Prepare for addition
YHIGH, X ;>> Get the Hi-Res HOB
HRPAGE ;>> Add for hi-res page
NEWPTR+1 ;>> And stare it too
\>> End of macro
ROW 1Go to next row

ROW ;Put counter in register
SETPIR OLDPTR ;Set pntr to old row

YLOW, X :>> Get the Hi-Res LOB
OLDPTR ;>> Store In pointer

.>> Prepare for addition
YHIGH , X ;>> Get the Hi-Res HOB
HRPAGE ,>> Add for hi-res page
OLDPTR+1 :>> And store it too

:>> End of macro

#BOT_ROW+1 . Is
uP:LOOP No,

it past bottom row?
so go do another row

top row to new bottom row

908B1:
90B3:
QPRS-
98B7:
9PB9.

9288:
908BE:
90C0:
90C1:
96C4
90C6

90C8:
90CB:

9CE8
9QEA

9QEC
9QEF
98F1
9@F2

90F5:
9QF7:

90F9:

90FB

90FD
9100

9102

9103

9106
9108:

9131:
9133:
9135:
9137:
9139:

913B:
913E:
9140:
9141:
9144:
9146:

9148:
9148:

69
1A
a5
1B
BF

56
1c

16

10

69
1C
95
10
BF

56
1A

16
1B

4E

BF
1E

56
1c
16
19
10

1E
1E

56
1A

16

1B

aE

6 1E

56
1c

16
1D

1E
1E

56
1A

16
1B

FF
D9

93

91
8F

93

94

91

93

94

23

94

91

93

94

93

94

93

94

91
8F

LDA
STA
LoA
STA
LDX
>>>
LDA
STA
cLe
LDA
ADC
STA

<<

JSR
IMP

#<BUFFER :Set pointer to buffer
OLDPTR
#>BUFFER
OLDPTR+1
#BOT_ROW ;Set new pntr to bottom
SETPTR NEWPTR
YLOW, X ;>> Get the Hi-Res LOB
NEWPTR .>> Store in pointer
:>> Prepare for addition
YHIGH, X :>> Get the Hi-Res HOB
HRPAGE :>> Add for hi-res page
NEWPTR+1 :>> And store it too
,>> End of macro
MOVEROW .Go move the row
KEYIN .Go look for another cmnd

R R T T e TR TR T TR T T

« Scroll down

R TP T TR PR T

SCROLL_DOWN

« Store bottom row i1n buffer

LDA
STA
LDA
STA

. LDX
>>>
LDA
STA
CcLC
LDA
ADC
STA

<<<

JSR

+ Move the next

LDX
STX

>>>
LDA

STA

cLC

LDA

ADC

STA

<<<

DEC

LOX

>>>

LDA

STA

cLC

LDA

ADC

STA

<<<

DWN LOOP JSR
LDX
>>>
LDA
. STA
cLe

LDA

ADC

STA

<<<

DEC

LDX

>>>

LDA

STA

CLC

LDA

ADC

STA

<<<

CPX
BCC

» Restore old

LDA
STA
LDA
STA
LDX
>3
LDA
STA
CLC
LDA
ADC
STA
<<<

JSR
Jmp

for later restore

#<BUFFER :Set the pointer to
NEWPTR the buffer
#>BUFFER
NEWPTR+1
#BOT_ROW ;Set old location to
SETPTR.OLDPTR top row
YLOW X ;>> Get the Hi-Res LOB
OLDPTR ;>> Store in pointer

,>> Prepare for addition
YHIGH , X ;>> Get the Hi-Res HOB
HRPAGE :>> Add for hi-res page
OLDPTR+1 :>> And store it too

;>> End of macro
MOVEROW :Go move the row

rows down:

#EOT_ROV .Start at bottom row
ROW .Save in counter

SETPTR.NEWPTR

YLOW, X .>> Get the Hi-Res LOB
NEWPTR :>> Store in pointer

;>> Prepare for addition
YHIGH, X ;>> Get the Hi -Res HOB
HRPAGE .>> Add for hi-res page
NEWPTR+1 :>> And store 1t too

;>> End of macro
RCM ;Go to next row

Put counter in register

SET PTR.OLDPTR

YLOW, X 1>> Get the Hi-Res LOB
OLDPTR >> Store in pointer

.>> Prepare for addition
YHIGH, X >> Get the Hi-Res HOB
HRPAGE >> Add for hi-res page
OLDPTR+1 >> And store It too

>> End of macro
MOVEROW :Go move the row

ROW .Restore the row counter
SETPTR NEWPTR ;Set pntr for now row

YLOW, X :>> Get the Hi-Res LOB
NEWPTR ;>> Store in pointer

,>> Prepare for addition
YHIGH, X ;>> Get the Hi-Res HOB
HRPAGE ;>> Add for hi-res page
NEWPTR+1 ;>> And store It too

;>> End of macro
ROW ;Go to next row
ROW ;Put counter in register
SETPTR OLDPTR
yLOW, X ;>> Get the Hi-Res LOB
OLDPTR 1>> Store in pointer

:>> Prepare for addition
YHIGH , X :>> Get the Hi-Res HOB
HRPAGE .>> Add for hi-res page
OLDPTR+1 i>> And store it too

;>> End of macro
#TOP_ROW-1 ;Is 1t past top row?
DWN : LOOP iNo, so go do another row
bottom row to new top row:
#<BUFFER :Set pntr for buffer
OLDPTR
#>BUFFER
OLDPTR+1
#TOP_ROW ;Set new pntr for top row
SETPTR.NEWPTR
YLOW, X ;>> Get the Hi-Res LOB
NEWPTR ;>> Store in pointer

;>> Prepare for addition
YHIGH, X ;>> Get the Hi-Res HOB
HRPAGE ;>> Add for hi-res page
NEWPTR+1 ;>> And store it too

;>> End of macro
MOVEROW :Go move the row
KEYIN ;Go check next key input

R
s SUBROUTINE MOVERON .

D

914E:
9150
9152:
9154:
9155:
9157:

9158:

915A:
915D
915F:

9160

9163:
9165

9167

9169
9168

916E .

916F:
9171:

9172

9174:
9175:

9176

9178:
917A:
917D:

917F:
9180:
9182:
9184

9187:

9189:
918C:
918E:
918F:
9192:
9194:

9196

9198

919A:
919C:
919F:
91A0:

91

E8
EQ

4c

A2

BD
85

BD
65
85

AQ
A9
85
99

10

27
1A
1C

56
1A

93

16 94

1B

27

69 95

1A

F7

09
69
1A

95

ca

D6 8F

29

56 93
1C

16 94

19
10

00
1C

8@
a1

95

96

388

392
393

MOVEROW

L #NUMCOL ;Get no. columns in row
MOVEIT LDA (OLDPTR) .Y ;Get the cld byte

STA (NEWPTR),Y ;Store it in the new loc

DEY ;End of row?

BPL MOVEIT :No, goc move next byte

RTS \End of subroutine

B
« Scroll bytes RIGHT: N

Ceseacasisastetethabibathbbobab U NIEEIERIP IR bR
SCROLL_RIGHT

LDX #TOP_ROW 1Start with top row

RIT:MOVE >>> SETPTR.OLDPTR :Set byte pointer
LDA YLOW,X 1>> Get the Hi-Res LOB
STA OLDPTR ;>> Store in pointer
CcLC ;>> Prepare for addition
LDA YHIGH, X ;>> Get the Hi-Res HOB
ADC HRPAGE :>> Add for hi-res page
STA OLDPTR+1 ;>> And store it too
<<< :>> End of macro
LDY #NUMCOL ;Point to right column
LDA (OLDPTR),Y ;Get that byte
STA BUFFER 'Store for wrap-around
DEY ;Start loop at penult col
RIT:LOOP LDA (OLDPTR),Y ;Get the o!d byte value
INY yPoint to new byte
STA (OLDPTR),Y ;And store at new loc
DEY :Move back to moved byte
DEY ;End of row?
BPL RIT:LOOP ;No, go get next byte
LDY #E ;Point to left column
LDA BUFFER ;Restore right byte
STA (OLDPTR) .Y ; to left column
INX ;GO to next row down
CPX #BOT_ROW+1 :Past bottom row?
BCC RIT:MOVE :No, go do next row
JMP KEYIN ;Yes, go check key input

B L

.
L L L

MOVE_RIGHT
LDX #TOP_ROW ;Start at top row

MBR:LOOP >>> SETPTR.NEWPTR :Set the pointer
LDA YLOW,X 1>> Get the Hi-Res LOB
STA NEWPTR 1>> Store In pointer
CLC .>> Prepare for addition
LDA YHIGH, X i>> Get the Hi-Res HOB
ADC HRPAGE :>> Add for hi-res page
STA NENPTR+1 :>> And store it too
<<< i>> End of macro

» Zero the buffer bytes
LDY #NUMCOL+1 ;Get the no columns
LDA 40 ;Set things to zero
STA NEWBYTE iClear the new byte too

RCLOOP STA BUFFER,Y iClear the buffer byte
DEY ;Done?
BPL RCLOOP No, go loop

« Shift the bits:
DY #e .Set to first column

MBR:SHFT ,Get the current byte

L
LDA (NEWPTR).Y
PHA ;Save the byte

AND 4310000034 Mack out pixel bits
STA COLORBIT ;Save the result
PLA .Get back the byte
ASL :Shift pixels right!
ASL ‘Now bit 6 is in carry
ROL NEWBYTE (Roll it into new bit 1
LSR :Shift back one
BEQ MBR:2 ;If no dot. buffer unchng
ORA BUFFER,Y .Get what's there
AND #%@1111111 .Clear buffer color bit
ORA COLORBIT :Add current color bit
STA BUFFER,Y Save the results

MER: 2 INY :Go to next buffer byte
LDA NEWBYTE Get the new byte
BEQ MBR:23 Don't save if zero
ORA COLORBIT And put in new color bit
STA BUFFER,Y Store the results

91C7;
91co -

91CB:
91CD:

91CF .
91D1:
91D4:

2106

9107

91D9:

9108
91DE
91EQ
91E2

91E4
91ES

91E7:
91€9:

9210:

921F:

9222:

9224:
9225:

9228:

922A:

922C.
922€:

9230
9232

9235

9236

A9
85

co
99

20
82

28
D5

27
69
1C

F8

(5]

56
1A

16
1B

02

69

1A

1A
28
F5
27

69
1A

co
04
D6

00

56
1C

16
1D

95

95

8F

93

94

95

8F

93

94

95

394
395
397
398
399
409
401
402
403
404
405
406
497
4p8
409
419
411
412
413
414
415
416
417
418
419
420
421

422
423
424

426
427
428
428
428
428
428
428
428
428
429
430
431
a32
433
434
435
436

437
438
439
a49
441

442
443
442
445
446
447
448
449
450
451

452
453
454
455
456
457
458
459
459
459
459
459
459
459
459
460
461
162
463
464
465
466
467
468
469
470
471

MBR:3 LDA #0 Zero the new byte
STA NEWBYTE
CPY #NUMCOL+l Past last column?
BCC MBR:SHFT No, go to next byte

« Move the buffer row back to the hi-res screen

LDY #NUMCOL :Get the no. of columns
MBLOOP , LDA BUFFER.Y ;Cet the shifted byte

STA (NEWPTR) .Y ;Store it on screen

DEY (End of row?

BPL MBLOOP No. go move next byte

+ Restore last byte to the first

LDY #NUMCOL+1 ;Set to end of buffer

LDA BUFFERY :Get the buffer value

LDY #@ ;Point to first column

ORA (NEWPTR) .Y ;Get what's there

STA (NEWPTR) Y :Save the results

INX .Go to next row down

CPX #BOT_ROW+1 ;Past bottom row?

BCC MBR:LOOP NO, Rgo do next row

JVWP KEYIN .Yes. go check key input
+ Scroll bytes LEFT: .

B e R L LT

SCROLL_LEFT

LDX #TOP_ROW .Start with top row
LFT:MOVE >>> SETPTR.OLDPTR .Set byte pointer
LDA YLOW.X :>> Get the Hi-Res LOB
STA OLDPTR :>> Store in pointer
cLC ;>> Prepare for addition
LDA YHIGH, X i>> Get the Hi-Res HOB
ADC HRPAGE ;>> Add for hi-res page
STA OLDPTR+1 :>> And store it too
<<< ;>> End of macro
Loy #9 \Point to left column
LDA (OLDPTR) Y ;Get that byte
STA BUFFER :Store for wrap-around
INY :Start loop second col
LFT:LOOP LDA (OLDPTR).Y :Get the old byte value
DEY ;Point to new byte
. STA (OLDPTR),Y ;And store at new |loc
INY iMove back to moved byte
INY ;Point to new byte
CPY #NUMCOL+1 :Past column end’
BCC LFT:LOOP :No, go get next byte
LDY #NUMCOL iPoint to right column
LDA BUFFER :Restore left byte
STA (OLDPTR),Y ; to right column
INX ;6o to next row down
CPX #BOT_ROWN+1 ;Past bottom row’
BCC LFT:MOVE iNo, go do next row
JMP KEYIN \Yes, go check key input
R L R T R R L R R LT e T R T
« Move dots left: -

B R R

MOVE_LEFT
LDX #TOP_ROW ;Start at top row
MBL:LOOP >>> SETPTR.NEWPTR :Set the pointer
LDA YLOW. X :>> Get the Hi-Res LOB
STA NEWPTR ;>> Store in pointer
CLC :>> Prepare for addition
LDA YHIGH,X :>> Get the Hi-Res HOB
ADC HRPAGE :>> Add for hi-res page
STA NEWPTR+1 :>> And store it too
<<< .>> End of macro

s+ Zero the buffer bytes:

LDY #NUMCOL+1 ;Get the no. columns
LDA #0 ;Set things to zero
STA NEWBYTE ;Clear the new byte too
LCLOOP STA BUFFER,Y ;Clear the buffer byte
DEY iDone?
BPL LCLOOP :No, go loop
« Shift the bits:

9238
923A:
923C:
9230
923F:
9241

9242

9244
9245

9246

9248
924A;

9248
924D
9250
9252
9254

9257
9258

925A:

925C

925E:
9269 ;
9262

9265

9267:

9269

9268:

926D:
926F;
9272

9274
9275

9277:
9279:
927C:
927E:
9289

9282:
9283
9285:

9287:

928A:

928C:
928F:
9291 :
9292:
9295
9297:

9299
9298:
929D:
929F:
92A1:
92A2:

92A4:
92A5:
92A7:
92A9:

92AC:

92AE :
928B1:
92B3:
9284
9287
92B9:

92B8:
92BD:
92BF :
92C1:
92C3:
92C4:

92C6 :
92C7:
92C9:
92CB:

89
AD

91
E8
90

aC

27
1C

80
91

92
92

A
69 95

2%
69 95

69 95

27
69 95
1c

F8

28
69 95
27
1C
1Cc

co

D6 8F

56 93

16 94

D6 8F

56 93

16 94

co
D6 8F

Loy
LDA
PHA
AND
STA
PLA
AND
LSR
PHP
ROR
LSR
PLP
BEQ
ORA
AND
ORA
STA

HNUMCOL
MBL: SHFT (NEWPTR) Y
#%10000000
COLORBIT

#%O1111111

NEWBYTE
NEWBYTE

MBL :2
BUFFER Y
#%01111111
COLORBIT
BUFFER Y
MBL: 2 DEY
BPL
LDY
LDA
BEQ
ORA
STA

HANUMCOL+1
NEWBYTE
MBL :3
COLORBIT
BUFFER,Y

MBL:4

MBL:3 LDA 4B

STA NEWBYTE

CPY
BNE

#NUNCOL +1
MBL | SHFT

;Set to last column
;Get the current byte
.Save the byte
.Nask out pixel
.Save the result
.Get back the byte
:Delete color bit

;Shift pixels left!

:Save P register

;Roll it into new bit 7
:Move it into bit 6
:Restore P register

;If no dot, buffer unchng
;6et what's there

;Clear buffer color bit
1Add current color bit
:Save the results

bits

:Go to next buffer byte
iPast end?

iThen set new buff
;Get the new byte
.Don't save If zero
JAnd put in new color bit
iStore the results

i ndex

1Zero the new byte

;Past last column?
:No, go to next byte

+ Move the buffer row back to the hi-res screen:

LDY #NUNCOL :Get the no. of columns
LBLOOP LDA BUFFER.Y :Get the shifted byte

STA (NEWPTR),Y ;Store It on screen

DEY :End of row?

BPL LBLCOP :No, go move next byte
s+ Restore last byte to the first:

LDY ENUNCOL+1 ;Set to end of buffer

LDA BUFFER.Y .Get the buffer value

LDY #NUNCOL ;Point to last column

ORA (NEWPTR) ,Y ;Get what's there

STA (NEWPTR) .Y ,Save the results

INX iGo to next row down

CPX #BOT_ROW+!1 ;Past bottom row?

BCC NBL .LOOP yNo. go do next row

JMP KEYIN .Yes, go check key input
eeetemtum s a AR e R R A S Al N bR b Rk
+ Inverse the colors: .
ae e KKK S AN eI KRNI RN RN a RO
SET_INVERSE

LDX HTOP_ROW ;Start at top row
INVLOOP >>> SETPTR NEWPTR

LDA YLOW,X ;>> Get the Hi-Res LOB

STA NEWPTR i>> Store in pointer

CLC 1>> Prepare for addition

LDA YHIGH, X 1>> Get the Hi-Res HOB

ADC HRPAGE 1>> Add for hi-res page

STA NEWPTR+1 1>> And store it too

<<< 1>> End of macro

LDY #NUNCOL
ROWLOOP LDA (NEWPTR).Y ;Get hi-res screen byte

EOR #%11111111 ;XOR it with all ones

STA (NEWPTR) ,Y ;And store it back

DEY iPast first column?

BPL ROWLOOP iNo, go to next byte

INX Go to next lower row

CPX HBOT_ROW+1 Gone below last row?

BCC INVLOOP ;No, go to next row

JMP KEYIN :Go check for next key

B

» Change the color bit

B R

CHG_COLOR_BIT

LDX #TOP_ROW ;Start at top row
CBLOOP >>> SETPTR.NEWPTR
LDA YLOW, X ;>> Get the Hi-Res LOB
STA NEWPTR ;>> Store In pointer
CLC :>> Prepare for addition
LDA YHIGH X :>> Get the Hi-Res HOB
ADC HRPAGE i>> Add for hi-res page
STA NEWPTR+1 ;>> And store it too
<<< ;>> End of macro
LDY #NUNCOL
RLOOP LDA (NEWPTR) .Y Get hi-res screen byte
EOR #%10008000 ;XOR the color bit
STA (NEWPTR) ,Y ;And store it back
DEY (Past first ¢olumn?
BPL RLOOP No, go to next byte
INX 1Go to next lower row
CPX #BOT_ROW+1 ;Gone below last row?
BCC CBLOOP :No, go to next row
JMP KEYIN 1Go check for next key

92F@:
92F2:
92F4:
92F7:

92FA:
92FC:
92FE:
9320:

9302
9305

9308
9308

930E
9310

9313

9315

9316

9319
931B

931D
931F
9321

9323:

9326
9328
9329
932C
932E

9330:
9332:

9334

9336

9338
9339

9338
933D
933F
9341
9342
9344
9346

9349
9348
934C
934E
9350

9353:

D6

20

F2
D6

co

8F

co

co
8F

FF
8F

co
8F

co
8F

93

94

93

94

8F

F3
8F

652

AN R E TN RIS BN IIIRNIIIIINNINOISRIRNBIGRIIUISTN

+» Change the Hi-Res page -
B T PP R P T R P P P PP S PP PP
CHANGE_PAGE
LDA HRPAGE .Is it page 17
BNE MAKE_P1 :No. so make it page 1
BIT FULLSCRN :Must be FULL graphics
BIT FLIP2 iFlip to pege 2
LDA #$20 ;Store the HOB page byte
STA HRPAGE
JMP KEYIN
MAKE_P1 LDA FMFLAG JFull or mixed?
BNE HRP:1 . It was mixed, do nothing
BIT MXEDSCRN :Nake it mixed screen
HRP: 1 LDA 40 :Store the HOB page byte
STA HRPAGE
BIT FLIP1 (Flip to peage 1
JMP KEYIN
« Toggle between FULL/MIXED hi-res screen: .

D L T R P

TOGGL_FULLMXD

LDA HRPAGE i1s it page 27
BEQ TOGGLE :No, toggle FULL/MIXED
JSR BELL :Can't toggle from page 2
JMP KEYIN

TOGGLE LDA FMFLAG (Get the flag
EOR 41 ;Switch its value
STA FMFLAG :Save new value
BNE MAKEFULL ;1f 1, make FULL

& BIT MXEDSCRN ‘Make it MIXED screen

JMP KEYIN

MAKEFULL BIT FULLSCRN :Make it FULL graphics
JMP KEYIN

L T T TP PSP GG SN R

= Merge the Hi-Res screens: .

T e

PICTURE_MERGE

LDX HTOP_ROW .Start at top row
MLOOP >>> SETPTR.NEWPTR
LDA YLOW X :>> Get the Hi-Res LOB
STA NEWPTR :>> Store in pointer
cLC .>> Prepare for addition
LDA YHIGH,X ;>> Get the Hi-Res HOB
ADC HRPAGE i>> Add for hi-res page
STA NEWPTR+1 :>> And store it too
<<< :>> End of macro
LDA HRPAGE .Change the page
EOR #s20 iMake $20->0, 9->320
STA HRPAGE .Store other page number
>>> SETPTR. OLDPTR ;Set pntr to that page
LDA YLOW.X .>> Get the Hi-Res LOB
STA OLDPTR (>> Store in pointer
cLC i>> Prepare for addition
LDA YHIGH,X :>> Get the Hi-Res HOB
ADC HRPACE ;>> Add for hi-res page
STA OLDPTR+1 :>> And store it too
<<< ;>> End of macro
LDY #NUMCOL :Get number of columns
RMLOOP LDA (OLDPTR),Y :Get hi-res byte old page
EOR (NEWPTR),Y ;XOR it with what's there
STA (NEWPTR),Y ;And store it on new page
DEY iPast first column?
BPL RNLOOP :No. go to next byte
LDA HRPAGE .Change page back
EOR #3280 1B->820, $20->0
STA HRPAGE ;Restore HR screen page
INX ;Go to next lower row
CPX #BOT_ROW+1 ;Gone below last row?
BCC MLOOP ;No, go to next row
JMP KEYIN 1Go check for next key
chretseetiatstatsestnassuasenniontsoshsssbboensnse
s« Clear the screen: .
AN AI AT TE IR RSO RIS bO b e bbb
CLEAR_SCREEN
LDA HRPAGE Which page is it?
CcLC ;Prepare to add
ADC #3520 :Add for mon HPAGE
STA HPAGE ;Store i1n aplsoft loc
JSR HCLR iClear that screen
JMP KEYIN :Go get next key
B O U R Py
+ Hi-Res Screen addresses: .

L S T L

9356

9359

935E:
9361
9366:
9369:
936E:
9371:
9376
9379:
937E:
9381:
9386
9389:
938E:

9391

9396
9399
939E:
93A1:

93A6

93A9:
93AE:
93B1:

93B6
9389
93BE

93C1:

93C6
93Cc9

93CE:

9301

93D6 -
93D9:
93DE :

93E1
93E6

93E9:
93EE -

93F1

93F6 .

93F9

93FE:
9401 .
9406 *
9409 :

940E

9411:

9416
9419:
941E .
9421:
9426 :

9429

942E .
9431 .
9436
9439:
943E
9441 :
9446

9449

944E

9451
9456
9459
945E

9461 :

9466

9469
946E :
9471
9476
9479:
947E:
9481 :

9486

9489:
948E
9491 :
9496 :
9499 .
949E :
94A1:
9446
94A9 :
94AE .
9481:
94B6 :

9489

94BE :
94C1;
94C6:
94C9;
94CE .
9401 :

o0

653
a2 oo
654
80 890
655
00 o8
656
80 89
657
00 09
658
80 8¢
659
0o 90
660
80 8¢
661
28 28
662
A8 AB
663
28 28
664
A8 A8
665
28 28
666
A8 A8
667
28 28
668
A8 A8
669
58 5S¢
670
D8 D@
671
58 50
672
D¢ De
673
S50 5@
674
D@ D@
675
58 5@
676
D@ D@
677
678
38 3C
679
38 3C
680
39 30
681
3y 33U
682
3A 3E
€83
3A 3E
684
3B 3F
685
3B 3F
€86
38 3C
687
38 3C
688
39 3D
689
39 3D
690
3A 3E
691
3A 3E
692
38 3F
693
38 3F
€694
38 3C
€95
38 3C
696
39 30
697
39 3D
698
3A 3E
€99
3A 3E
700
3B 3F
701
3B 3F

YLOwW

YHIGH

HEX
HEX
HEX
HEX
HEX
HEX
HEX

HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX

HEX

HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX

Poloulolaalaplolalifelolilof)
B0808P8080828080
00P02PB0VA0CRH0D
8080808080808080
VUPOYYLEPYEYRBOY
8080808080808080
Pelaeloplalapialalifeleliol]
B080808080808080
2828282828282828
ABABASABABABABAB
2828282828282828
AEABABSABABABABAB
2828282828282828
ABABABABABABABAB
2828282828282828
ASABABABABABABAS
5050505050505050
DODADBDBOADADADD
5050505050505050
DODYDEDBDODODYDY
50505050650505050
D2DEDODADBDADADG
5058505050505050

D@DEDODADIDADADO

2324282C3234383C
2024282C3034383C
2125292D3135393D
2125292D3135393D
22262A2E32363A3E
22262A2E32363A3E
232728B2F33373B3F
23272B2F33373B3F
2024282C3034383C
2(324282C30334383C
2125292D3135393D
2125292D31353930D
22262A2E32363A3E
22262A2E32363A3E
23272B2F33373B3F
2327282F33373B3F
2024282C3034383C
2024282C3034383C
2125292D3135393D
212529203135393D
22262A2E32363A3E
22262A2E32363A3E
23272B2F33373B3F

23272B2F33373B3r

702

NV
ASC
INV
AsC
NV
ASC
INV
ASC
NV
ASC
INV
BRK
NV
ASC

BRK
INV
ASC

BRK
INV
ASC

BRK
INV
ASC
BRK
INV
ASC
BRK
INV
ASC
BRK
INV
ASC
BREK

0s

T T ST
Messages (commands at bottom of screen) *

R

“SCROLL COMMANDS :

<"
>

s

.2.

" INVERSE COLORS"

s

" :CHANGE COLOR BIT"

g

" FULL/MIXED TOGGLE"™

" MERGE SCREENS~”

‘CTRL- "

':CLEAR SCREEN"

p

" FLIP PAGE"

5"
CLQuITt

1

;Buffer to store line

Allow 41 bytes for this data buffer
Thus for the normal 48K Apple with DOS

703
704 »
705
706
9406: D3 C3 D2 7067 SCLCMNDS ASC
94D9: CF CC CC A@ C3 CF CD CD
94E1: C1 CE C4 D3 BA Ag
94E7. 3C 2D 708
94E9: AC AD 709
94EB: 2D 3E 710
Q4ED: AC AQ 711
94EF: 3C 712
94F2. AC AR 713
94F2: 3E 714
94F3: AC AQ 715
94F5: 01 716
94F6. AC AZ 717
94F8: 1A 718
94F9: 0O 719
94FA: 99 720 INV: 1
94FB: BA C9 CE 721
94FE: D6 C5 D2 D3 C5 A@ C3 CF
95p6: CC CF D2 D3
950A: 20 722
959B: 23 723 CHGBIT:C
95pC. BA C3 C8 724
950F: Cl1 CE C7 C5 AQ C3 CF CC
9517: CF D2 A@ C2 C9 D4
9510 @0 725
951E: @6 726 FLMX F
951F: BA Cé6 D5 727
9522: CC CC AF CD C9 D8 C5 C4
952A: AG D4 CF C7 C7 CC C5
9531 00 728
9532 @0 729 MERGE M
9533: BACD C5 730
9536. D2 C7 C5 A@ D3 C3 D2 C5
953E. C5 CE D3
9541 00 731
9542 03 14 12 732 CLEAR:@
9545: OC 2D 20
9548: BA C3 CC 733
954B: C5 C1 D2 A@ D3 C3 D2 C5
9553: C5 CE
9555: 0O 734
9556: 10 735 PAGE:P
9557: BA C6 CC 736
955A: C9 D@ A@ D@ Cl1 C7 C5
9561: @0 737
9562: 11 738 QUIT:Q
9563: BA D1 DS 739
9566: C9 D4
9568 0A 740
741
742 BUFFER
743
744 .+ NOTE:
745 .
746 .

--End assembly--

1642 bytes

Errors

2]

CHECK CODE 3 @

ON: HI.RES HOUDINI

TYPE: B

LENGTH:. 0669
CHECKSUM: 90

the buffer must be before $95D8 (38360)

KEY PERFECT 4.0

RUN ON
HI.RES .HOUDINI
CODE ADDR# - ADDR#
2CA9 8F00 - 8F4F
2CD4 8F50 - 8F9F
2D6C 8FAQ - 8FEF
2887 8FF0 - 903F
2668 9940 - 9@8F
28FE 9090 90DF
286E 9PE0 - 912F
28D2 9130 - 917F
2689 9189 - 91CF
2AB5 9100 - 921F
2535 9220 - 926F
24E4 9279 - 92BF
2948 92C0 - 930F
25EE 9310 - 935F
2956 9360 93AF
2ECC 9388 - 93FF
27C9 9400 - 944F
26E1 9450 - 949F
2736 94A0 - 94EF
2827 94F0 - 953F
1884 9540 - 9568
PROGRAM CHECK IS : 0669

Hi-Res Houdini

129

130
1490
150

160

170
180
199
200
210

229
230

249
250

LISTING 2: HOUDINI.DRIVER
REM sassxsassssssansnsssrhsss
REM = HOUDINI .DRIVER .
REM « BY SCOTT ZIMMERMAN
REM « COPYRIGHT (C) 1984
REM « BY MICROSPARC, INC =«
REM « CONCORD, MA, 01742 =«
REM snssssssmsrssnsnnsvrnson
D$ = CHRS (4)
ONERR GOTO 369
HOME : VTAB 2: HTAB 1@: INVERSE : PRINT
"HI-RES HOUDINI DRIVER": NORMAL
VTAB 12: CALL - 958: VTAB 22: PRINT "'?
' FOR DISK CATALOG": PRINT "<RETURN> TO
SKIP": VTAB 12: PRINT "FILE NAME FOR PAG
E 1 PICTURE:": INPUT "";P1$
IF P1$ = "7" THEN HOME : PRINT D$"CATAL
OG*: PRINT "PRESS ANY KEY TO CONTINUE": GET
K$: PRINT : HOME : GOTO 119
IF P1$ = "" THEN 150
PRINT D$; "BLOAD" ;P1%;" A$2000"
VTAB 12: CALL - 958: VTAB 22: PRINT "'?
' FOR DISK CATALOG": PRINT "<RETURN> TO
SKIP": VTAB 12: PRINT "FILE NAME FOR PAG
E 2 PICTURE:": INPUT "";P2%
IF P2$ = "7" THEN HOME : PRINT D$"CATAL
OG": PRINT "PRESS ANY KEY TO CONTINUE": GET
K$: PRINT : HOME : GOTO 150
IF P2$ = "" THEN 190
PRINT D$; "BLOAD" ;P2%; " A$4000"
PRINT D$; "BLOAD HI.RES .HOUDINI"
CALL 36608: TEXT : HOME
HOME : VTAB 12: PRINT "DO YOU REALLY WAN
T TO QUIT? (Y/N)";: GET K$: PRINT : IF K
$ = "N" THEN CALL 36608: GOTO 218
IF K$§ < > "Y" THEN 210
HOME : VTAB 12: PRINT "LOAD NEW PICTURES
AND RE-START? (Y/N)";: GET K$: PRINT : IF
K$ = "Y" THEN 100
IF K$ < > "N" THEN 230
ONERR GOTO 380

260 HOME : VTAB 12: PRINT "SAVE PICTURE ON P
AGE 17 (Y/N)";: GET K$: PRINT : IF K$ =
“N" THEN 300
270 IF KS < > "Y" THEN 268
280 VTAB 12: CALL - 958: PRINT "ENTER FILE
NAME:": INPUT "";F$: IF LEN (F$) > 15 OR
VAL (F$) > @ THEN PRINT "ILLEGAL FILE
NAME. TRY AGAIN.": FOR I = 1 TO 1000: NEXT
. GOTO 28@
298 PRINT D$"BSAVE";F$;", A$2000,L$2000"
300 HOME : VTAB 12: PRINT "SAVE PICTURE ON P
AGE 27 (Y/N)';: GET K$: PRINT : IF K$ =
“N" THEN 349
310 IF K$ < > "Y" THEN 300
320 VTAB 12: CALL - 958: PRINT "ENTER FILE
NAME:": INPUT "";F$: IF LEN (F$) > 15 OR
VAL (F$) > @ THEN PRINT "ILLEGAL FILE
NAME. TRY AGAIN.": FOR I = 1 TO 1000: NEXT
: GOTO 320
330 PRINT D$"BSAVE";F$;",A$4000,L$2000"
340 HOME : END
350 REM ERROR TRAP #1
360 VTAB 22. PRINT "ERROR NUMBER "; PEEK (22
2): PRINT "PRESS ANY KEY TO START AGAIN"
;: GET K$: GOTO 100
370 REM ERROR TRAP #2
380 VTAB 22: PRINT "ERROR NUMBER "; PEEK (22
2): PRINT "PRESS ANY KEY TO TRY AGAIN";:
GET K$: GOTO 260
KEY PERFECT 4.0
©“ RUN ON
HOUDINI .DRIVER
CHECK CODE 3 8
CODE LINE# - LINE#
6645 10 - 1990 ON: HOUDINI.DRIVER
D588 116 - 200 TYPE: A
CE94 210 - 309
9698 310 - 380 LENGTH: ©£528
PROGRAM CHECK 1S’ : D5A2 'CHECKSUM: B@

