AprPPLE UTILITIES

EEXTRA AMPER

Extra Amper is a protocol that allows vou
to load several of your favorite ampersand
routines into auxiliary memory and call each
of the routines individually.

f your Apple has 128K, Extra Amper can put the extended

64K of memory to good use. Extra Amper is an assembly

language protocol that allows you to convert several of your
favorite ampersand (&) routines into ultrasmart & routines. A smart
& routine is one that can be used without interference when another
& routine is already in memory. Extra Amper goes three steps fur-
ther. Tt allows several routines to be stacked in memory: it uses
auxiliary memory rather than main memory; and it has no fixed
location in memory, which means it docsn’t interfere with programs
that do have fixed locations. Since the routines are in auxiliary
memory, main memory is freed for other purposes, such as stor-
ing a long program or minimizing garbage collection.

The & routines are stored in auxiliary memory, but run from main
memory. If the routines were run from auxiliary memory, they
would have to be extensively rewritien.

See Figure 1 for an overview of Extra Amper. When Extra Amper
(Listing 1) is run, the entire program (including the & routines)
is loaded into main memory at $2000. Because the numbering of
the listing will change when you add your routines, it has been
divided with section headings. During initialization (Section | of
Listing 1), the program is divided into two parts. The command
handler (Section 2) that parses an entered command is moved to
main memory just above HIMEM. which has been reset to accom-
modate the command handler.

The program automatically detects if DOS 3.3 or ProDOS is run-
ning and adjusts the memory above HIMEM accordingly. The indi-
vidual routines (Section 3) are dispatched to auxiliary memory
beginning at $800 until they are called. When called. cach routine
is transferred to a routine buffer that resides just above the com-
mand handler, and control is passed to the selected routine

COMMANDS USING EXTRA AMPER

Type the command RUN AMPER.LOADER to install Extra
Amper. Then verify that each & routine works properly. To test
the error message routine. type:

&

The NO COMMAND STRING error message will appear. Then
type:

&A

and INCORRECT COMMAND STRING should appear.
Next. check out the hexadecimal-decimal (hex-dec) converter.
Enter:

&S xxxx
This converts a hex number nto its decimal equivalent. Enter:
&xxxxx

This converts a signed decimal value into its hex equivalent. For
example, type:

83300

The decimal cquivalent, 768, will be returned. This routine is an
cxample of a relocatable routine. Next, test the two nonrelocatable
“dummy”’ routines by entering &KROUT2 and & CALL3. and look
for their respective messages

ENTERING THE PROGRAM

[f you have an assembler that can handle multiple ORGs, enter
the source code as shown in Listing 1 and assemble it using EX-
TRA.AMPER as the object file name.

If you don’t have an assembler, or if your assembler can’t handle
multiple ORGs, enter the Monitor with CALL —151 and key in
the hex code from Listing 1 through line 374. Then continue en-
tering the hex codes shown in Listing 2 and save the program with
the command:

BSAVE EXTRA.AMPER.A$2000,L$31E

If you are using Key Perfect and an assembler that does not store
zeros for the DS (or equivalent) pseudo-op, BLOAD EX-
TRA.AMPER and perform the following Monitor commands:

2097 :0 N 2098<2097 .20FEM
218F .0 N 2190<218F . 21FEM

Then save the program again using the BSAVE command above
before running Key Perfect. Enter Listing 3 and save it with the
command: SAVE AMPER.LOADER For help with entering
Nibble lisungs, see the Typing Tips section.

ADDING & ROUTINES

Now you're ready to add your own & routines to Extra Amper.
While it’s possible to construct a command hst and develop the rou-
tinc organization without an asscmblcr, it's extremcly difficult. (The
cost of an assembler is cheap compared to the time you’ll waste.)
Carefully carry out each of the steps below.

FIGURE 1: Memory Map

{ | (s)
—i‘ @
L BOYTINGS i
N \;, \\
A . X \
Y N\ b\
Ny W
3 \
() AN
3/ AN
“\,>» ROUTINGS —
v
\ =1 -
= 4 ’) : .
MAIN AUX

I. Remove the two dummy routines (lines 445-483). Remove the
hex-dee converter (lines 379-463) if vou don’t want to keep it.
Do not remove Section 3a, the error message routing.

routine in sequential order, and assign

Insert your routines immediately following the error message

each one a routine num-

ber. (If you keep the hex-dec converter, start with routine two
at line 445.) Label the beginning byte of cach routine, BRTna.
and the end byte, ERTra, where # is the routine number. If only

have the object code for the routine,

use a disassembler such

as Sourceror on the Merlin disk to generate the source code.

Be sure that only the main program is

used. If the program be-

gins with code that sets the & vector, delete this part of the pro-
gram. You can recognize this as STA instructions with S3F6

and $3F7 as operands.
3.
as in lines 47-57.

Enter any new equates at the beginning of the program, such

4. Change the origin of each routine to ORG ROUTINE ($2200).

Sce lines 383 and 450 for examples.

5. At the end of cach routine calculate the values of the symbols
BRTn and ERTn according to the following tormulas:

EXAMPLE 1: Amiemmd Routine Before Conversion

1 .

2 « EXAMPLE1

3 « BY HAROLD PORTNOY

4 « COPYRIGHT (C) 1987

5 « BY MICROSPARC, INC.

6 « CONCORD. MA 21742

7 .

8 AMPERV ~ EQU $3F5

9 cout EQU $FDED

10

11 ORG 3300

12
0300 A9 08B 13 LDA 4MSGROUT
0302° 8D F6 03 14 STA AMPERV=+1
0305 A9 03 15 LDA H>MSGROUT
0307: BD F7 03 16 STA AMPERV+2
030A: 60 17 RTS

18
0308 A2 00 19 MSGROUT LDX 4300
030D BD 19 €3 20 CHREAD LDA MESSAGE , X
0310: F@ 18 21 BEQ DONE
0312 20 ED FD 22 JSR CouT
0315 EB 23 INX
0316: 4C 0D 03 24 JUP CHREAD
0319: 8D 25 MESSAGE HEX 8D
031A: D3 C1 CD 26 ASC "SAMPLE ROUTINE"8D@Q
031D DB CC C5 AG D2 CF D5 D4
0325: C9 CE C5 8D 00
O32A: b8 27 DONE RTS
--End assembly, 43 bytes, Errors: @

10.

11.

LEGEND:
1. The entire EXTRA.AMPER file is load-
ed into main memorv ar $2000.

39600 2. HIMEN is set low enough 1o allow room
for the command handier (CH) and rou
tine buffer.

3. The command handier is moved above
HIMEN and the routines are moved 1o
auxiliary memory at $800.

4. The ampersand vector (&) is adjusted
to point to the command handier.

5. When a particular rowiine is called, it
ts moved to the routne buffer.

$2000

$800

$300

BRTn = ERTp+ 1

ERTn = ERTna - BRT#n + BRTn

where n represents the number of the current routine and p

represents the number of the previous routine. These symbols
are the actual addresses of the beginning and end of the routine
when it is stored in auxiliary memory. All routines will execute
at S2200 in main memory. Examples are shown in lines 442-
443 and 462-463.

Print out an assembly listing of the routines and note each three-
byte instruction. If the last byte in the instruction refers to an
address within the routine, mark the line with a relocation label
as shown in lines 453, 457, 471 and 475. For the relocation
table. the address of the byte to be chinged must be the address
as it exists when the program is first loaded. not the address as-
signed by the ORG statement. This is accomphished by adding
BRTn-BRTO to each address. Go to Section 1h and list these
relocation addresses as defined addresses (DA) in the relocation
table. as shown in lines 174-177

Determine the total number of addresses in the relocation table
and equate RELADR with this value (line 39). RELADR cannot
exceed 127, which is the cffective limit for the number of rou-
tines that can be added.

Determine the number of bytes in the longest routine. Divide
by S$100 or 256. If there is a remainder. add one to the quotient.
The result is the number of pages that must be reserved above
the command handler for the routines. Then add another page
for the command handler and equate PAGES with this value
(line 37).

Construct the command list (Section 2¢). The error routine must
be the first routine in the list. Note that each routine is added
in a specific manner, beginning with (0 as a dehmiter.
Seleet a command string for cach routine. Carefully scrutinize
the command string for a combination of characters that represent
an Applesoft BASIC keyword. If a keyword is present in the
string. its token must be substituted for the characters: for ex-
ample, TOKEN would be the byte that represents TO. followed
by the ASCII codes for K.E and N.

Count the number of characters (or keywords) in the string, and
enter this command length after the delimiter (line 297). The
ASCII values of the characters or tokens that represent a com-
mand string arc cntered after the command length. For exam-
ple, ROUT2 is 52 4F 55 54 32 while TOKEN 15 C1 4B 45 4E,
since $C1 15 the token value tor TO. See the Applesoft BASIC

Programmer’s Reference Manual, Vol. 2 for a list of the BASIC
keywords and their ASCII tokens.

12. Follow the command string in the command list with the de-
fined addresses of the beginning (BRTr) and ending (ERT») ad-
dress of the routine. The entire procedure is repeated for each
routine, as demonstrated in Section 2e. The command list must
end with 00 FF 00 (lines 313 - 314) followed by the end-of-list
marker, ENDLIST, in line 318.

13. If there is any special subroutine required in the initialization,
it should be appended in Section 1i.

Example 1 shows a typical & routine before it was installed in
EXTRA.AMPER. The converted version of this program appears
in lines 452-463 Listing 1. Following the 13-step process just out-
lined, Example 1 was converted as follows:

1. This step was skipped, since Example 1 is one of the dummy
routines mentioned.

2. This routine was assigned number two in the sequence and in-
serted after the hex-dec converter. Lines 19-27 are the main rou-
tine in Example 1; lines 13-17 serve only to set up the & vector.
The labe] MSGROUT was changed to BRT2a and DONE was
changed to ERT2a. In addition, the reference to DONE in line
21 was changed.

3. An equate for AMPERY is not needed and COUT is already
defined in line 34 of Listing 1. No new equates are needed.

4. The origin in line 11 was changed from $300 to ROUTINE in
line 450 of Listing 1.

5. Lines 462-463 define the symbols BRT2 and ERT2.

6. The two three-byte instructions that refer to locations within the
routine are in lines 20 and 24 of Example 1. The two refer-
enced locations are CHREAD and MESSAGE, which were
changed to R2a and R2b respectively. The names were also
changed in the source code for lines 20 and 24.

7. The two relocation addresses added to the table when this rou-
tine was installed are shown in lines 174-175 of Listing 1. This
required an adjustment to the value of RELADR in line 39.

8. The hex-dec converter is considerably longer than Example 1,
50 no change had to be made the value of PAGES (line 37).

9- ROUT2 was selected as the command string for the new rou-

12. tine, so it was entered in the command table in lines 296-300.
No Applesoft keywords are included in this string and the length
is five (line 297). The actual auxiliary memory locations for the
beginning and end of the program are stored immediately after-
ward (lines 299-300).

13. No special subroutines are required.

14. This routine should assemble with no conflicts.

Installation Considerations

Extra Amper (Listing 3) should be installed before any substan-
tial BASIC program because it temporarily occupies memory at
$2000; thus, a long BASIC program, its variables, or the Hi-Res
screen may be overwritten. Rather than install EXTRA.AMPER
directly, it's better to use a short BASIC loader program, such as
in Listing 3.

HOW IT WORKS

The loader program Listing 1 starts by checking for ProDOS. Lines
90-200 handle memory checking under ProDOS, while lines 210-
240 handle memory checking under DOS 3.3.

Under ProDOS, the machine ID byte is read in line 90. A value
of less than 128 indicates the machine is not a Ile, Ilc, or IIGS. In
addition, bits 4 and 5 must both be set or else the machine has less
than 128K. In line 130 EXTRA.AMPER is BLOADed and its length
1s checked in line 140. If it’s greater than 6K, then the /RAM volume
is checked and a warning message is displayed before EX-
TRA.AMPER is executed.

Things are more complicated under DOS 3.3. In line 200 the
program is terminated if the machine is not a He, Ic or [IGS. In

line 210 the Ilc and TIGS are accepted without further testing.

In line 230 the subroutine at line 370 READs in a short machinelan-
guage program (a modified version of Apple’s ID program in the
Extended 80-Column Texi Card Supplement) 1o check for auxiliary
memory. This is then executed with a CALL 724. The subroutine
at line 180 is used to check if there is really an 80-column card
present. The documented soft switch location SCO17 is not reliable,
since it cannot distinguish between the absence of a card and an ex-
tended 80-column card. The machine language routine returns a value
of 64 if there is only 64K and a value of 128 if there is 128K. Extra
Amper is then BLOADed if the machine has passed all the tests.

Finally, a CALL 8192 executes Extra Amper and a confirmation
message is printed.

Refer to Figure 1 for a graphic portrayal of what happens. On
running Listing 1, Extra Amper is loaded into main memory begin-
ning at S2000 (See Figure 1, arrow 1. The command handler be-
gins at $2100 and the & routines begin at $2200. With initialization,
HIMEM is lowered by enough pages of RAM for the command han-
dler and a routine buffer that can accommodate the longest & rou-
tine (see arrow 2). The command handler is then installed above the
new HIMEM and the & routines moved to auxiliary memory at $800
(arrow 3). The & vector 1s pointed at the command handler (arrow
4). When a routine is called, it is moved from auxiliary memory
1o the routine buffer, and program control is transferred to the rou-
tine (arrow 5).

In Section 1 of Listing 1, pages of memory are allocated for the
command handler and for the longest routine. Unless an extensive
number of routines is being used (over 12) and the command list
is very long, Section 2 will not exceed one page of RAM. HIMEM
is lowered by the allocated number of pages. [f ProDOS is running,
the four pages of buffer used by ProDOS above HIMEM are
preserved. In Section Ib, a pointer is saved for use in Section Ig
to move the command handler to its final location.

An offset is then determined (section l¢) that will be used in con-
junction with the relocation subroutine in Section le and the reloca-
tion table in Section 1h to make cach & routine relocatable. If the
routines were not relocatable, then they would have to have a fixed
location in memory. and could possibly interfere with other machine
language programs (such as a line editor). Relocation is accomplished
by adjusting the last byte of all three-byte instructions to internal refer-
ences in a routine. Note that the offset is between the original loca-
tion ($2200) of a routine and its final location above the command
handler. Although the routines are first directed 1o auxiliary memory
and then to the routine buffer above the command handler, this is
immaterial in determining the offset.

The & vector is then pointed at the relocated command handler
(Section 1d), and the initialization section concludes by moving the
command handler to the space allocated by moving the command
handler to the space allocated above HIMEM and the & routines
into auxiliary memory (Section 1g). The move to auxiliary memory
is accomplished using the AUXMOVE subroutine (SC3111), which
is similar to the Monitor MOVE subroutine (SFE2C). The begin-
ning. end and destination addresses are placed in the A-registers (S3C-
$43). To move the bytes from main memory to auxiliary memory,
the Carry is set prior to calling AUXMOVE. If the move is from
auxiliary memory to main memory, the Carry is cleared first.

The command handler is the heart of the Extra Amper program.
Each & routine is assigned to a specific command string. The com-
mand string immediately follows the &. The command handler com-
pares the entered command string (Section 2a) with the command
strings in the command list (Section 2e). If a match occurs, the com-
mand handler finds the beginning and ending addresses of the rou-
tine in auxiliary memory. It then moves the routine to the routine
buffer space above the command handler in main memory using the
AUXMOVE subroutine (Section 2¢). Control is then passed to the
selected routine (Secton 2d).

Section 3 contains all the & routines. As noted, this section along
with the command list must be set up in a specific manner so that
the selection & routine will be transferred to main memory and run.

THIS PROGRAM IS AVAILABLE ON DISK

If you'd rather not type in the listing for

disk, complete, free of typos and ready to run. Keyboard Tutor, HPLOT
GS, DateSubtract, Shadow Play, Spelling Maze and Extra Amper are
available on a single disk for an introductory price of $12.95 plus $1.50
shipping/handling ($2.50 outside the U.S.) from Nibble, 52 Domino Dr.,
Concord, MA 01742, Introductory price expires 11/30/87; after that date,
the price will be $16.95. See the coupon on the last page of the Nibble
Software Catalog for ordering information.

this program, you can buy it on

LISTING 1: EXTRA.AMPER

2000
2002
2003

2011:

2013

1 D
2 « EXTRA AMPER .
3 « by Harold Portnoy .
4 « Copyright (c) 1987 .
5 « by MicroSPARC, Inc. . Merilin
6 « Concord. MA 01742 .
7 B
8
9 « NOTE: THIS PROGRAM DOES NOT CHECK TO DETERMINE IF
e « EXTENDED MEMORY IS AVAILABLE. DO NOT USE UNLESS YOUR
1n « COMPUTER HAS 128K
12
13 +EQUATES
14Zero page
15 AlL a sic ‘A registers
16 A2L s $3E
17 AdL - $42
18 MEMSIZ = $73 SHIMEM
19 CHRGET - 81 :Get char.. advance TXTPTR
20 CHRGOT B 87 :Get char
21 TXTPTR = 83 Text pointer
22 BEGCH s $FC ,Beginning of com hand pointer
23 OFFSET = $FD :Temp for offset
24 CMOLEN = SFO iCommang string length
25 RPIR - SFE iRelocation table pointer
26 TXTTENP = SFE iTemp for TXTPTR
27Page 3
28 ERV = $3IF5 JAmpersand vector
29 + .. Probos
30 = $BFOO :ProDOS JMP to NLT
31 +....General
32 AUXMOVE = sCill Main <=> aux move
33 SYNERR SDEC9 :Syntax error msg
34 cout = SFDED Print character
35 WOVE = $FE2C ‘Monitor MOVE
36 8.0 cial
7 PAGES = 2 .Pages above HIMEM for
£ . commanc handler and routine
39 RELADR = 17 :Number of addresses to be
a0 . relocated. (min. = 18)
a1 AUXROUT = $800 ;Start of S/R in aux memory
a2z INIY = $2000 of initialization
43 COMHAND = $2100 of command handler
44 ROUTINE = $2200 of routine buffer in
45 memory
a6
47 +EQUATES for routine 1 (hex-dec Converter)
48 . Zero page
49 LINNUM = 550 iLine number register
50 o .. General
51 FRNNUM = $0067 :Evaluate as number
52 ILLQUAN = $E199 :Illegal quantity error
53 GETADR = $E752 :Convert to hex
54 . and leave in LINNUN
55 LINPRT = $ED24 feom hex
56 PRNTAX - $F941
57 CROUT = SFOBE ‘Qutput CR
58
59 ORG INIT
60
61 « SECTION 1: INITIALIZATION
62 .
63 « Seoctien la) Petermine if in BOS 3 3 or ProROs
64 « then get buffer space for command handler (CH)
65 « and longest routine
66
67 . Allocate pages for CH and one routine
68 . above HIMEM. (DOS 3 3 and ProDOS)
69
AS 74 70 LoA MENSIZs1 ‘Determine HIMEM
EL 71 SEC :
E9 02 2 SBC APAGES ‘Allocate pages for longest
73 routine + | pg for CH
85 74 74 STA MENSIZel reset HIMEM
75
76 « . Maintain the 4 pages of ProDOS buffer
77
AE 08 BF 78 LDX ENTRY :Is it ProDOS?
E0 4C 79 CPX AsaC
Do a3 80 BNE 1 :No. then continue
18 81 cLe
69 04 82 ADC rse4 iYes, 4 pages of buffer
&2
B84 « Section ib: Save high byte to beginning aderess of CH
85
85 FC 86 1 S5TA BEGCH :Pointer to start of CH
a8 87 PHA iSave for ampersand vector
88
89 « Section lc: Determine offset between high order byte of

2014
2016
2017

2038

203€
2042
2042
2043

2046

2048
2047
204C
204E

2096

sssss3e233333e

20

21
0

F6

F7

L0
7A
FE

7A
FF

FE
FE

22
ES

96

03
03

2@

FE

2gss2sgses8sss
2ggsesesssse

179
180
181
182
183
184
185
186
187

+ initial CH

location ($2100) and nigh order byte of

« CH location above HIMEM

SEC
SBC
STA

* Section 1d
. CcH

LDX
STX
PLA
STA
« Section le

Loy
LDA
STA
INX
LDA
STA
cLe
LDA
ADC
STA
INX
oPx
BCC

RLOOP

« Section 11:

#>COMHAND
OFFSET

Subtract high byte of initial
location to obtain offset

Point ampersand vector at relocated

2300
ANFERV41

Point & ta CH

ANPERV+2

Relocate CH code. as necessary
300
RTBL . X
RPTR

iPoint to table

RTBL . X
RPTR+1
(Add offset
{RPTR).Y
OFFSET
(RPTR) .Y

#RELADR.2
RLOOP

;Addresses x 2 bytes/address

Jump to special subroutine.

« If no subroutine then SPECIAL should be an RTS.

JSR

« Section lg
- anc exit

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR

LDA
STA
LDA
STA
LDA
STA
LDA
SEC
s8C
ADC
STA
LDA
STA
LDA
STA
SEC
JNP

« Section 1h
« of internal

RTBL

SRRERERERRRESR

« Section li:
« relocation

SPECIAL RTS

SPECTAL :Omit it no special S/R

Move CH code to final location

YCOMHAND iMove CH trom

AlL ; tnitial location
¥>COMHAND | to CH location
AlLel ; above HINEM
YENDLIST

A2L

¥>ENDLIST
A2Le1

o

AdL

BEGCH
AdLa
MOVE

WROUTINE
AlL
H>ROUT INE

;Move routines from
initial location
10 Jux memory

AUXMOVE

Relocation
references

taple--high byte addresses

R1+2
R2+2
R3+2
Ads2
R5+2
RBe2
R7+2
RE+2
RPa+2
ROD+2

;RL to RB represent the
. addresses in the CH

(Relocation aodresses atter RS
. represent routine addresses

determining relocation

addresses

R3a+2+BRTI-BRTO .
H3D+24BRI3-BRTO

Append special subroutines at end of
table

:Return--no special S/’R

+Start new page

oS

COMHAND -« (Fil| to $210Q0 with @9

LISTING 1: EXTRA.AMPER (continued)

188
189
190 « SECTION 2 COMMAND HANOLER
- 191«
192
2100 DB 193 194
195 + Section 2a: Check for valid command.
196
197 . First save text pointer position
198
2181 AS B3 199 LDA TXTPTIR
2103 385 FE 200 STA TXTTEMP
2185 AS B9 201 LDA TXTPTR+lL
2107: 85 FF 202 STA TXTTEMP+]
2

204 . Get command length End of command Iist denoted
205 . . by $FF

206
2109 A0 00 207 LDY ns00 :Zero character counter
2108: C8 288 FINDCMD INY
216C: B9 68 21 209 R1 LDA CMDLIST.Y :Get length from command |ist
210F: 85 FD 210 5T CMDLEN (Save comand length
2111: C9 FF 211 (= ESFF (End of command |ist marker?
2113: FO 27 212 BEQ NOCNOD (YeS. RO to error message
213
214 .« . Compare Input with command string
215
2115: A2 20 216 LDX K300
2117: 20 87 00 217 JSR CHRGOT ;Get Input character
211A: EB 218 CWDLOOP INX
2118: C8 219 INY
211C: D9 68 21 220 R2 CNP CMDLIST Y :Does char match cmd. string
21iF: DO @A 221 BNE CMDADV :No. advance to next string
2121: E4 FD 222 CPX CWDLEN Yes Is length correct?
2123: Fo 19 223 BEQ ACTCMD (Yes. then command active
2125: 20 81 08 224 JSR CHRGET iNo, get next char.
2128: 18 225 cLe
2129: 90 EF 226 BCcC CvoLOCP Always
227

228 . Incorrect command string. Advance to next command
229 . string and restore text pointer

230
2128: c8 231 CMDADV INY
212C: B9 6B 21 232 K3 LDA CMDLIST.Y :Advance to next delimiter
212F: DR FA 233 BNE CMDADY
2131: AS FE 234 LoA TXTTEMP ‘Restore text pointer
2133: 85 B8 235 STA TXTPTR
2135: AS FF 236 LDA TXTTEMP+1
2137 85 B9 237 STA TXTPTR+1
2139: 18 238 CLC
213A: 9% CF 239 BCC FINOCMD (Check next command string
2%

241 .+ Section 2b: No command found Send error message in
242 « tirst routine.

243
213C. A2 02 244 NOCND Loy ase2 {Reset counter to first routine
245
246 . Section 2c: Input matches command string Find first
247 .+ and last addresses of routine in command list. Move
248 . routine from aux memory to routine buffer above HIMEM
249 .« Note Text pointer advanced because most ampersand
250 « routines expect this on entry.
251
213E: 20 Bl 20 252 ACTCMD JSR CHRGET Advance text pointer
2141: c2 253 INY
2142: BY 6B 21 254 R4 LDA CMDLIST.Y Get beginning address
2145: 85 3C 255 STA AlL
2147 B9 6C 21 256 RS LDA CMDLIST+1.Y
2144 85 3D 257 STA AlLsl
214C: B9 6D 21 258 Re LDA CMOLIST+2.Y :Get end address
214F: 85 3E 259 STA A2l
21%1: BY SE 21 260 R7 LDA CMOLIST+3.Y
2154: 83 3F 26) STA AZLe1
2156 A9 00 262 LDA ¥300 :Destination addross
2158. B5 42 263 STA A4L
215A: AS FC 264 LDA BEGCH :Program pointer
215C: 18 265 cLC . plus one page
21%0: 69 01 266 ADC vsol
215F: BS 43 267 STA AdLel
2161: BD 6A 21 263 R8 STA GOROUT+2 JAnd point to routine
2164: 18 263 cLe iMove routine A->M
2165 20 11 €3 279 JSR AUXMOVE
27
272 .+ Section 2d. Jump to beginning of routine buffer
273 .+ above HIMEM
274
2168 4C 02 00 275 GOROUT HEX 4C2P00 (JMP to routine in buffer space
276
277 « Section 2e: Construct the command |ist
278
279 Error routine.
280
2168 @0 281 CMOLIST HEX 00 Delimiter
216C @1 00 282 MEX 0100 iCmd length, commang string |
216E @0 08 283 DA BRTO BIn address of error routine |
2178 51 08 284 DA ERTO :Eng address of error routine
285
286 « . First routine hex - dec Converter
287
2172 @ 288 HEX 00 Delimiter
2173 @1 28% HEX ©01 :Commang length
2174 23 299 ASC ‘n :Command string
2175 52 08 291 DA BRTL :Beginning address of routine |
2177- AD 08 292 0A ERT1 {End address of routine |
293
294 .« . Sample routine
295
2179 @0 296 HEX 09
2174 @5 297 HEX 05

2178 52 4F 8% 298 ASC ‘ROUTZ’

217€:

2180
2182

2184

2185
2186:
2188
218A:

54
AE

218C: 00

2180:

218F:

2190
2193
2198:
21A3:
21A8:
2183
2188
21C3:
21C8:
2103:

2108
21€E3

21E8 -

21F3

21FB.

2200
2202
2204

2206 :

2207

2204

220F -
2210

2212.
2213:

2216
2218
2218
221¢

n
-

32
o8

3
L]

FF

1€
ED

Fa

a3

D2

2200 28 A7
2203 €9 24

22

FD

22

299

W G W W W W W DWW W W
T T T T I T L T I I s
GO NN VB WN~BOENNNBWN—B

CE C7

398

DA BRT2
DA ERT2

« . Routine with keyword in command string

HEX 0@

HEX 02

HEX 8C33 (CALL3
DA BRT3

DA ERT3

. Final routine. This must almays complete the
. command list.

HEX oe
HEX FFéo :End of commanc list

. End of list marker
ENDLIST DS 1

s ROUTINE-« (Fill to 32200 witnh @@

SECTION 3: ROUTINES

NOTE The origin of wach routine starts at $2200, s=o
that ahen eventually transferred above HIMEM, the tirst
byte mill De In the tirst memory location in buffer
Transter is from auxiliary memory, so the command fist
must have the true address of the routine in auxiliary
meemory To determine the beginning address of each
routine in aux memary. be sure to use the following
protocol . BRTn and ERTn are the beginning and end
addresses of esch routine when in auxiliary memory

n is the number of the routine

BRTna and ERTNa are the corresponding addresses

in main memory on first running the program

1. BRY = AUXROUT (s808)

2. BRTn = ERT(n-1) + 1

3 ERTn = ERTns-BRTna«BRTn

D Y

Section 3a: First routine is for ‘no routine’
error message.

BRTOa Loy ASFF JEnd of command |ist marker
CPY CMDLEN iSame as commanc length?
BEQ BADCWD iYes. incorrect commanc string

. No command string message

NOCDSTR INY iNo. then no command string
ROs LDA NOCMOSTR,Y ;Print 'NO COMMAND STRING'
BEQ ERT@a iExit
JSR CouT
cLe

BCC NOCDSTR ‘Always taken

« . Incorrect command st7ing message

BADCMO INY
ROb LDA BADCMDST.Y Print 'INCORRECT COMMAND
BEQ ERTOa . STRING'
JSR cout
cLe
8CC BADCMD

+ . Messages

NOCMDSTR HEX 8DB7
ASC "NO COMMAND STRING™

CE C4 A0
c
HEX 8D00
BADCNDST HEX 8D87
ASC "INCORRECT COMMAND STRING®
D4 AD C3
Ca AD D3
HEX 3099
ERTOa JMP 5300 iLast byte is ERT@a42
BRTO = AUXROUT
ERTO = ERTRa+2-BRTa+BRTQ

Section 3b: First ampersand routine. This routine
does not contain any absolute internal references
Theretore It s relocatable without modification

ORG ROUTINE

EX: hex -> dec or dec -> hex converter
hex -> dec. Enter SASXXXX
dec -> hex, Enter &Nxxxxx. x i3 valid hex or dec digit

BRY1a JSR CHRGOT ‘Beginning of routine
CMP 18 ils It hex -> dec

LISTING 1: EXTRA.AMPER (continued)

2208
2207

2208
2200
220F
2211
2214
2216
2218
221A
221C
221E
2220
2222
2225
2227
2228
2229
222A
2228
222¢
222
2230
2231
2213
2234
2236
2238

2238:
223D:

223F
2242

2244
2246

2249

224C:

224¢

2251:
2253
22565
2258
2258:

2200

2202

2205
2207
220A:
2208:
220E :

220F

2212:

221A

2222:
2223
2226:

222€
2236
2238

2238:

2243

2248:
224F -

--End assembiy,

© A2

Fo

18
ED

00

DE

El

00
E7

FD

F9
FD

c1 o

cc
CE

00
13

(2]
02
c1
D2

c9

CE
cs

c?

CF

39
392
393
394
2209
397
398
399
400
481
402
4903
494
405
406
407
408
489
410
411
412
413
414
a15
418
417
418
419
ae
a2
a22
423
a2q
425
426
427
428
429
430
431
432
413
43q
a3
436
437
438
419
4é0
LT
as2
443
444
445
446
447
a48
a49
450
as1
452
as53
a54
a55
456
457
458
a59
A2 D2
8D 00

798

END OF LISTING 1

BNE DtoH No. dec -> hex
BEQ HtoD :Yes, hex -> dec
« Convert hexadecima! to deciwal
A2 00 396 HtoD LDX #3500 dnitialize A2L
STX A2L
STX A2L+1
Loy Ased Allow only for digits
H2D ISR CHRGET Yes . Convert M -> D
BEQ PRT
EOR As30 ‘Modified
cmP ASOA . monitor
8cc 0IG GETNUM
ADC 388 routine
cMp ASFA
BCS 016G
Pl SYNERR
oIG LDX LRL X}
ASL
ASL
ASL
ASL
NXTBIT ASL
ROL AL
ROL A2L+1
DEX
BPL NXTBIT
[ad Trap too many digits
BMI TLLNUM
BPL M20
TLLNUM I ILLQUAN
PRT LDX AZL
LDA A2Le1
JSR LINPRT (Print dec number
8PL RTN
- Convert decimal to hexadecimal

DtoH LDY V300
JSR FRMNUN Is it a number”
JSR GETADR ‘hex Into LINNUM
LOA #4587 Print a §
JSR cout
LOX LINNUN .Load hex address
LDA LINNUN+1 left in LINNUM
JSR PRNTAX Print hex

RTN JSR CROUT

ERT1a RTS .End of CONVERT S/R

BRT1 = ERTO+1

ERT1 = ERT1a-BRT1a+BRT1

« Section 3c Example of a routine requiring relocation.

+ Note that BRT2 represents true address of beginning
s+ of routine and that routine origin is reset to
. 32200

ORG ROUT INE
BRT2a LDX NS00
R2a Loa R2MSG . X
BEQ ERT2a
JSR cout
INX
R2b Jup R2a
R2MSG HE X 80
ASC "SANPLE ROUTINE" 8000
CF DS D4
ERT2a RTS
BRT2 = ERT1+1
ERT2 = ERT2a -BRT22+BRT2
- Section 30: Example of 8 routine mith BASIC keyword
- In the command string. Sec command list CALL3
ORG ROUT INE
BRT3a LDX ¥3@@
R3a LoA R3MSG . X
BEQ ERT3a
JSR cour
inNx
R3b JNP R3a
R3INSG HEX 80
ASC "SAMPLE OF A ROUTINE"'8D
€6 A0 C1
€9 CE C5
ASC “WITH A BASIC KEYWORD'SD
€] D3 C9
D7 CF D2
ASC "IN THE COMNAND STRING"SDOO
CF CD CD
D4 D2 C9
ERT3a RTS
BRT3 - ERT2+]
ERT3 = ERT3a-BRT3a4BRT3
+ Section 3¢ Determine the address of the last byte

ENDROUT = ERT3414ROUTINE End of all routines address

bytes. Errors. @

KEY PERFECT 5.0

RUN ON
EXTRA . AMPER
CODE-5.0 ADDRY - ADDR# CODE-4.0
357847C3 2000 - 204F 2968
D912161E 2050 - 209F 2850
5678BE35 20A0 - 20EF 00
241B263A 20F0Q 213F 1E82
93D4C9C1 2140 - 218F 258D
5678BE35 2190 - 21DF 00
778114CD 21EQ@ - 222F 1D31
97820978 2230 - 227F 24D6
51BFE1DD 2280 - 22CF 25DB
6E6BCIBE 2208 - 231D 25F3
734614B4 = PROGRAM TOTAL = 031E

2252- 20 B7 00 C9 24 DO
2258- 3D FO 00 A2 00 86
2260- 3F AD 04 20 Bl 00
2268- 49 30 C9 6A 90 09
2270- C9 FA B@ 03 4C C9
2278- 03 OA OA OA OA OA
2280- 26 3F CA 10 F8 88
2288- 10 D9 4C 99 El1 A6
2290- 3F 20 24 ED 10 14
2298- 20 67 DD 20 52 E7
22A0- 20 ED FD A6 50 A5
22A8- 41 F9 20 8E FD 60
22B0- BD OE 22 FO 18 20
22B8- EB 4C 02 22 8D D3
22C0- DA CC C5 A@ D2 CF
22C8- C9 CE C5 8D 02 690
22D0- BD OE 22 FO 48 20
22D8- E8 4C 02 22 8D D3
22E0- D@ CC C5 A@ CF C6
22E8- AO D2 CF D5 D4 C9
22F0- 8D D7 C9 D4 C8 A0
22F8- C2 C1 D3 C9 C3 A0
2300- D9 D7 CF D2 C4 8D
2308- AOQ D4 C8 C5 A@ C3
2310- CD C1 CE C4 A@ D3
2318- C9 CE C7 8D 00 60

END OF LISTING 2

3E
FO
69
DE
26

3E
AOD
A9
51
A2
ED
Cl
D5
A2
ED
Cl
AQ
CE
Cl

c9
CF
D4

86
25
88
A2
3E
02
A5
00
A4
20
00
FD
CcD
D4
00
FD
cD
Cl1
C5
AQ
C5
CE
CcDh
D2

‘ LISTING 2: Partial Hex Code for Extra Amper (see instructions)

LISTING 3: AMPER.LOADER

10 REM sescssxcevucssectocsne

20 REM - AMPER . LOADER *

30 REM - BY HAROLD PORTNOY

40 REM - COPYRIGHT (C) 1987 »

50 REM - BY MICROSPARC, INC -

60 REM « CONCORD, MA 01742 -«

70 REM <+vevtvctrnnssonsansns

80 DS = CHRS (4):PD = PEEK (48896) = 76: IF
NOT PD GOTO 210

90 MI = PEEK (49048): REM MACHINE ID BYTE

160 IF MI < 128 THEN HOME : PRINT "NOT AN A
PPLE IIE. IIC OR IIGS": END

1106 IF MI - 128 < 48 THEN HOME : PRINT "128
K REQUIRED" - END

LISTING 3: AMPER.LOADER (continued)

120
130
140

150
160
170

180

190
200
210

220
230
240
250
2690
270
280

290
300

310
320

330

EF = 1: ONERR GOTO 300
PRINT D$"BLOAD EXTRA.AMPER"
IF (PEEK (48858) + 256 +

< 6 « 1024 GOTO 270

EF = 2: ONERR GOTO 300
PRINT D$"VERIFY /RAM"

HOME : PRINT "PROGRAMS IN EXTRA.AMPER EX
CEED 6K": PRINT "FILES IN /RAM MAY BE OV
ERWRITTEN": PRINT : PRINT "ESCAPE TO QUI
T, RETURN TO CONTINUE":: GET 2S$: PRINT

ON Z$ < > CHRS (27) GOTO 270: END

HOME : POKE 49153,0: POKE 49237.0: POKE
1024, 123-A = PEEK (1024): POKE 49236.0:
POKE 49152,@: IF A < > 123 THEN PRINT
"128K REQUIRED": END
RETURN
REM DOS 3.3 MEMORY CHECK

IF PEEK (64435) < > 6 THEN HOME - PRINT
"APPLE IIE, IIC OR IIGS REQUIRED": END

IF PEEK (64448) = @ OR (PEEK (64448) =
224 AND PEEK (65055) < > 96) GOTO 250:
REM 1IC OR 11GS
GOSUB 37@: CALL 724: GOSUB 180

IF PEEK (975) < > 128 THEN HOME
"128K REQUIRED": END

EF = 3: ONERR GOTO 300
PRINT D$"BLOAD EXTRA.AMPER"

CALL 8192: REM RUN EXTRA.AMPER
HOME : PRINT CHRS (18) PRINT "EXTRA.AM
PER INSTALLED"
END
E = PEEK (222):EL = PEEK (218) + 256 -

PEEK (219): POKE 216.8: CALL 3288

IF EF = 2 AND E = 6 GOTO 270

IF E = 6 THEN AS = "EXTRA.AMPER NOT ON T
HIS DISK": GOTO 350

IF E = 8 THEN AS = "1/0 ERROR--CHECK DRI
VE DOOR": GOTO 350

PEEK (48857))

PRINT

340 A$ = "ERROR " +

350

360

370

380

390

400

410

420

END OF LISTING 3

STRS (E) + " IN LINE " +
STRS (EL)

HOME : VTAB 12: PRINT AS$: VTAB 21: PRINT
"ESCAPE TO QUIT. RETURN TO TRY AGAIN":.: GET
2$: PRINT : IF ZS = CHRS (27) THEN END

ON EF GOTO 120,150,250: END

FOR 1 = @ TO 104: READ ML: POKE 724 + I,
ML: NEXT I: RETURN

DATA 8,120,173,23,192.48.48,160.42,190,
17.3.185,0,0.150.0.153.17,3,136,208,242,
76.1.0

DATA 8.160,42,185,17,3,153,0,0.136,208,
247,104,176.7,169,128.141,207,3.208.12,1
69.64,141,207

DATA 3.208,5,169,32,141,207.3,40,96.169
.238,141,5,192.141.3,192,141.0,8.173.0,1
2,201,238

DATA 208,14,14,0,12,173,0,8,205.0.12,20
8.3.56,176,1,24,141,4,192.141,2,192.76.2
38,2

DATA 234.0

KEY PERFECT 5.0
RUN ON

CODE-5.0 LINE# - LINE CODE-4.0
68CFBAD8 10 - 100 7F4E
2A9ACB27 110 - 200 B4DD
4808CB85 210 - 300 8E6A
80C7C104 310 - 400 FCAS
6C21547E 410 - 420 2E00
25E955B83 = PROGRAM TOTAL = 0635

