TIPS 'N TECIINIQUES

(FREAT
SHAPES

Use this simple

technique to implement more than
one shape table for your Hi-Res programs.

magine writing a program that uses
graphic text on the Hi-Res screen. You
want to draw other shapes, oo — per-
haps icons or special shapes to complement
your text font. According to conventional
programming wisdom, you'd make a huge

TABLE 1: Program Outline

. % Lines Function
shape table that contains all the shapes. After
it was assembled. it might even be too big 10-20 Clear the screen, \)u the gr.lphu.’ parameters and set the locations of the
1 fit into the location vou want. Or your ‘ load address and ProDOS™ A-parameter.
hape table Jht hog aluable i ‘ 30 Defines the Control-I> varable for DOS commands
shape table might hog valuable memory. | 40-50 Set the load address variable (in hex) for two shape tables, TABLE |
Itj\l";ld. try a (c_chnlquc [call sequential <‘ and TABLE.?

tabling. Instead of onc big shape table. cre- | 60 Displays the heading.
ate a shape table that has just text charac- | 70-110 Load both shape tables, with prompts, and read the ProDOS™ A
ters, and a scecond table that contains just parameter.
icons. All you need to do is to tell the com- Q0 Read the load address of the last BLOADed tile. For cach file loaded,
puter where to find the table from which to 4 variable 1s assigned to the address for future POKEing
draw. To do that, just POKE the address of | 100 Compares the address for the ProDOS™ A parameter with the value

.) B . i i | read before the BLOAD (PA) and if they are different, sets HIt and
the table you want to use into the shape table A & dliet : g

Idress pointers. The shape tables can be KD T e 5. address s
‘“‘ o polnic A " A ape st 130 Clears the text screen, defines Hi Res page | for drawing and CALLs
"“"“-‘Cd_ immediately from memory rather t a subroutine to clear it to black before displaying it with an HGR and
than being loaded trom disk. GREAT displaying prompts
SHAPES ('Listing 1) demonstrates the 150-170 Prompts for the shape table for display
sequentizl tabling technique. | 180 POKEs the address of the selected shape table into the shape table
| pointer
MULTIPLE SHAPE TABLES | 190 Assigns the number of shapes in the table to the varniable SHAPES. The
Ordinarily. zero-page memory locations | number of shipes in a table is found in the first byte of the table,
232 and 233 (SES nn;i SE9 hei) hold the | wm:'l_x 1s the memory address (computed by muluplying the high byte
ddress of the beginning of a shané table in by 256 and adding that product to the low bye).
A l 'gh B O & stiape tdbie I | 2w Allows you to scroll through the shape table, shape by shape. For the
Hemony (in low byte, h'gh_ byte tormqr) | examples given, only one shape per table is provided
Notice that there 1s no provision for refer- ‘[210 Clears the text screen window and reselects the shape table to display
{

encing a sccond or third shape table. Only
one may be accessed at a time.

Using the sequential tabling technique, there is no practical limit
1o the number of shape tables you can have in memory. And since
the tables used will be smadler, you can tuck them away in any con-
venient available memory location.

Here's how: For cach table you BLOAD into memory, assign
the high byte and low byte of the load address to variables. In List-
ing 1. the variables are stored in the arrays LO(X) and HI(X), When
vou wish to use a shape from table 1, simply POKE the low byte
into location 232, POKL the high byte into 233, and use a DRAW
or XDRAW command to draw the shape. To change tables, simply
POKE the address of the second table into addresses 232 and 233.

When using this technique. remember these important points

1. Know the load address of cach shape table.

2. POKE the address of the table into the shape table vector imme-
diately prior to drawing from it.

3. Find out how many shapes are in each table by reading the first
byte of the table.

After mastering these simple steps, you'll be on the road to greater
freedom and tlexibility in the use of shapes and shape tables

.. .there is no practical limit to the
number of shape tables vou can have
I memory.

The two short shape tables provided contain a single shape cach.
TABLE.1 (Listing 2) depicts a turnip and TABLE.2 (Listing 3)
contains the likeness of a tulip. If you have a few shape tables lying
around on disk, you may substitute them for these listings. Simply
rename them TABLE.D and TABLE.2 for the purposes of the
demonstration program . [t you want to use more than (wo tables,
just change line 70 to reflect the number of tables and remember
to modify lines 130 and 150 to correspond to the change. As always.
it is important to protect binary data from BASIC with appropriate
HIMEM and/or LOMEM statcments.

ENTERING THE PROGRAMS
To key in the demonstration program, enter the Applesoft pro-
gram as shown in Listing 1 and save it to disk with the command:

SAVE GREAT.SHAPES

To key in the shape tables in Listings 2 and 3. enter the Monitor
with CALL 151 and type in the hex code. Save Listing 2 to disk
with the command:

BSAVE TABLE.1,A$6000,1.$32
Save Listing 3 to disk with the command:
BSAVE TABLE.2,A$1000,L$43

For help with entering Nibhie listings. see the beginning of the Pro-
aram Listings Section.

HOW IT WORKS

You may want to study the listing to see how it works. The demon-
stration program is documented in Table 1. Note that the proce
dure is a little more complicated under ProDOS, since it keeps the
file’s load address in SBEB9,SBEBA and the load command’s A-
parameter address in SBESS, SBES9. It 1s important to check both
addresses, since a shape table is often used at a location different
from the one where it was created.
Great Shapes histings begin on page 92 i

Listing 1 for Great Shapes
GREAT.SHAPES

RE

1 cesbemstenertrescrtana

2 REM ~ GREAT . SHAPES .

3 REM - BY MARK R. CRAVEN -

4 REM « COPYRIGHT (C) 1987 -

5 REM « BY MICROSPARC, INC «

6 REM + CONCORD. MA 01742 -

7 REM ¢ccccsccsscscccescenss

10 TEXTY HOME

20 HCOLOR- 3 ROT= ©: SCALE=) PD = PEEK (4
8896) = 76 LA = 43634 + 5191 - PO .AA = 4
8728

30 0OS = CHRS (4)

40 LS(l) = "6000": REM FIRST LOAD ADORESS

50 LS(2) = "1000° REM SECOND LOAD ADORESS

60 VTAB 1: HTAB 8 PRINT "MULTIPLE SHAPE TAB
LE DEMO": FOR I = 1 TO 40: PRINT "-";: NEXT

706 FOR I =1 70 2

80 VTAB 10: HTAB 1:

90 HI

100

110
120
130
140
150
160
170
180

190

200

210
220

END OF

SHAPES =

CALL - 958: PRINT "LOAD
ING TABLE "I.:PA = PEEK (AA) + 256 « PEEK
(AA + 1): PRINT PRINT DS"BLOAD TABLE "
I." AS"LS(1). REM LOAD FIRST SHAPE TABLE
AT 24576. SECOND AT 4896
(1) = PEEK (LA 4+ 1) LO(I) = PEEK (LA)
REM BLOAD ADDRESS POINTERS FOR Ml AND
LO BYTES
IF PD THEN IF PA < > PEEK (AA) + 256 -
PEEK (AA + 1) THEN HI(I) = PEEK (AA +
1):LO(I) = PEEK (AA): REM PRODOS ADJUS
TMENT FOR 'A’ PARAMETER
GOsuB 220
NEXT
HOME
22: PRINT
 TABLE 2"
VTAB 23: PRINT "PRESS <ESCAPE>
ROGRAM" ; :
VTAB 23: HTAB 32
0:X = VAL (XS$)
IF X$ = CHRS (27) THEN TEXT

: POKE 230.32° CALL 62450
"PRESS '1' FOR TABLE

HGR : VTAB
1--'2' FO

TO EXIT P

GET X$: POKE - 16368,
ON X GOTO 180,180
© HOME END
PRINT CHRS (7)
INPUT AGAIN
POKE 232.L0(X)
E TABLE LOCATION
PEEK (256 - HI(X) = LO(X))
NUMBER OF SHAPES IN THE TABLE

FOR J = 1 TO SHAPES: DRAW J AT 130,80: HOME
: VTAB 21: HTAB 1: PRINT "SHAPE # ":J" O

F TABLE."X: GOSUB 220: XDRAW J AT 130.80

: NEXT

HOME : GOTO 130

VTAB 23: PRINT "PRESS <RETURN> TO CONTIN
UE":: GET Y$: POKE - 16368.08: RETURN

LISTING {

GOTO 150 REM BEEP AND
POKF 233 HI(X): REM SHAP

REM

Listing 2 for Great Shapes
TABLE.1

6000- 01 00 04 00 4D 4D 09 8D
6008- DF DF FB 6E 69 4D F1 DF
6010- FB 73 @D 4D 1E FF @E F5
6018- 17 2D 15 3F 3F 17 2D 2D
6020- 2D 3E 3F 3F 37 2D 2D 2D
6028- 1E 3F 3F QE 2D 1E 4D 49
6030- 01 00

END OF

LISTING 2

Listing 3 for Great Shapes

TABLE.2

1000- 01 00 04 00 49 49 49 FA
1008- 1B DF BB 2D 0D 2D @D 2D
1010- 3E FF 3F 1F 3F 2E 6D 2D
1018- @D 2D 3E 1F 3F 1F 3F 37
1020- 2D 6D 2D @D 35 1F 3F FF
1028- 3F 37 2D 2D ©D 2D @D 1E
1030- 3F FF 3F 37 2D 6D 2D F5
1038- FF 3F 77 2D 2D DE 36 4D
1040- 49 01 00

ENO OF LISTING 2

