Graphics Workshop

HI-RES GRAPHIGCS |

Owners of the Apple /e with an extended
80 column card have a whole new world of
grephics available to them. Double Hi-Res
Graphics has a resolution width of 560 dots
and 16 Hi-Res colors. This is the first in a
series of Graphics Workshop articles which
will explore this new territory.

by Robert R. Devine
1415 W, 19th
El Dorado, AR 71730

hortly after I traded in my old Apple IT

for a shiny new //e, I began hearing

strange rumors about some new 560-dot
“super Hi-Res™ capabilitics. Needless to say,
duc to my interest in Hi-Res graphics, this
caught my immediate attention. I WANTED
el

The problem. however. was that aside from
the peaple passing the rumors, there didn’t
seem to be anyone (including my local dealers)
who really knew anything about it. When 1
finally got the needed hardware, I spent a full
week trying to follow the manual’s instructions
so that I could see what this new Double Hi-
Reslooked like. After almost a dozen calls to
Apple in Cupertino, Dallas. Chicago, and
Charlote N.C., I hadn't been able to find
anyone who even knew how to turn on the
560-dot display.

Finally, after two weeks 1 received a call
from somcone at Apple who was able to help.
However, by that time I had managed, on my
own, to access the Double Hi-Res screens.
One of the many things I've always liked about
Apple has been the excellent, easy-to-
understand documentation that comes with
their equipment; however, I really think that
someone was “out to lunch™ on this one.

What we're going to do in this series is ex-
plore this new world of Double Hi-Res
graphics. see how it works, and look at the

strengths and weaknesses in this new area.
Despite my somewhat negative start, | think
that Double Hi-Res is great, and once you
understand how it works, I'm sure you'll like
it to0o.

As we go along, we'll develop a special
DHR driver program to use with the system,
as well as special utilities that will be useful
in accomplishing some of the things that we
currently take for granted.

“Nibbling at the Double Hi-
Res block shapes will require
a greater understanding of the
physical design of the Hi-Res
screens.”

Required Hardware

This series isn't for everyone: if you don't
have the proper hardware, you might just as
well turn back 1o the table of contents and
spend your time pondering one of the many
other interesting and informative topics in this
issuc.

The first thing you'll need is a model //e
Apple computer: models I1 and II Plus need
not apply.

The next thing you'll need is to be sure that
your Apple has a revision B or later mother-
board, as you can't generate Double Hi-Res
graphics on the version A motherboard. To
find out which version you have, open up your
Apple and look at the numbers printed on the
circuit board. just behind slot 3. The number
you're looking for is 820-0064-(revision #).

If yours is a revision B or later, you're all
set. If the motherboard in your Apple is an
A, then you'll need to have it replaced by your
Apple dealer. At present, Apple has an
arrangement with qualificd dealers to replace

the motherboard with the revision B at no
charge to you. The replacement is a simple
10-minute job, and what you'll get really
amounts to a whole new computer, as they'll
replace everything except the case, power
supply, and keyboard. Not a bad deal if you
ask me, especially if your Apple is out of
warranty.

The final item you'll need is the Apple ex-
tended 80-column card, which can be install-
ed in the auxiliary slot in your Apple. The card
will need to have a jumper installed on the two
Molex-type pins on the card. This card will
add 80-column display capabilities to your
Apple, as well as provide an additional 64K
of usable RAM

Benefits of a Hi-Res Monitor

One thing that you may soon consider pur-
chasing is a Hi-Res monitor. If you're using
a regular color TV with your Apple, you will
find that the 80-column text display will be
vinually unreadable. I now usc two monitors
— a Hi-Res green monitor for my text work
(fantastic for 80-column display. and very
helpful in graphics development since you can
see all the individual dots rather than blocks
of color), and a regular color TV for my
graphics work. The next thing on my shop-
ping list is a Hi-Res color monitor © replace
my color TV.

The reason for my commenting on the type
of monitor you use is this: The new 560-dot
Double Hi-Res screen can be used for either
full-screen graphics or graphics mixed with
four lines of 80-column text. If you're writing
or using a Double Hi-Res program with mixed
text, and using a regular color TV, the graphics
will be acceptable — but the 80-column text
won't be readable. Therefore, your choices are:
stick to full-screen graphics with simulated
text, get a Hi-Res color monitor, or forget
color by using a Hi-Res green monitor or
black-and-white TV.

which range from $2000 through S3FFFE. It
is this range of memory which is used for the
other 8192 bytes that are needed.

The result is that they've put 16,384 bytes
of Hi-Res screen data into 8,192 memory ad-
dresses. Cute, guys...real cute.

Double Hi-Res Screen Dimensions

We now realize that the Double Hi-Res
screen is really 80-bytes/columns wide; how-
ever, it is only 40 addresses wide. The
horizontal bytes/columns are numbered 0-79;
however, the horizontal addresses are
numbered 0-39. The important concept to
understand is that each address holds two bytes
of data. One byte of screen data is held in a
main memory address, and a different byte of
screen data is held in the exact same address
in auxiliary memory; therefore, cach address

is able to display two bytes of data or 14 adja-
cent dots on the screen.

Therefore, all even-numbered columns will
comam data from auxiliary memory, and all

“...you’ll need to retrain your
mind to think of each byte as
being 3 1/2 times wider than

it is high.’

As the graphics display circuitry inside your
Apple builds the 560-dot screen display, it
fetches bytes from these duplicate addresses
simultaneously and displays them sequentially.
The byte from auxiliary memory is first placed
on the screen in the proper even byte/
column (0,24...through 78). Then the byte
from main memory is placed in the adjacent
odd byte/column (1,3,5...through 79).

ibered columns will contain data from
your Apple’s normal Hi-Res memory.

‘To make things a bit easier to understand,
let’s refer to Figure 1, which is a representa-
tion of the Double Hi-Res screen. As you look
at it you will notice that the screen addresses
used are exactly the same as those used in
regular 280-dot Hi-Res graphics. The only real
difference is that while normal Hi-Res is 40
addresses and 40 data bytes wide, Double Hi-
Res is 40 addresses and 80 data bytes/columns
wide.

If you look at the top leftmost corner of the
screen, you will note that memory location
$2000 contains the screen information for both
columns O and |. The bit pattern for X-

FIGURE 1: THE DOUBLE HI-RES SCREEN

X X X X X X X X X X X «— MAIN MEMORY
. CotatmTE X x x X X X X X X ¥ X X “— AUXILIARY MEMORY
Cones 0 1 2 3 4 5 06 % 8 37 38 39 < apDRESS
—v‘;—/&— “”“““““ A, AN P,
l 0 1 7 8 9 10 11 12 13 14 15 16 17 74 75 76 77 78 79 ~— BYTECOLUMN
$2000 o $2027
52400 1 —— 52427
$2800 2 2827
$2000 3 $2027
$3000 4 $3027
$3400 5 $3427
$3800 6 827 [RcHTMOST
$3C00 3 ny siczr CoLuns
52080 8 $20A7
52480 9 $24A7
$2880 10 $28A7
52080 1 $2CA7
$3080 2 $30A7
$3480 13 SUAT
$3880 14 S38AT
$3700 189 $I7F7
$3BD0 190 p— $IBF7
$3FDO 191 $IFF7
e 2853539982385 3%2 dEg3Ed
é t 3 ;‘A :’1 vm‘w :; 3‘ -X: é S‘ .':‘ é ;’. é g ; g ?\'\ 5‘ § 2 +— X COORDINATES (0-359)
333 3TIRETITTITIIE 99 518 5 B h e cmanin
FETTIRRRRALILTETRR A23E8ER o

coordinates 0-6 is stored in memory location
$2000 in auxiliary memory (on the extended
80-column card), and the bit pattern for X-
coordinates 7-13 is stored in memory location
$2000 in your Apple’s regular Hi-Res memory.

Understanding how the Double Hi-Res
screen is laid out is essential to being able to
work this system, so I would suggest that you
become familiar with Figure 1 before pro-
ceeding further.

A Square Is a Rectangle...
But a Rectangle Is Not a Square

In our drawing of the Double Hi-Res screen,
we have shown each byte of memory as a
square. As each of us learned to work with
normal Hi-Res, we came to understand that
cach byte of data is really seven times wider
than it is high. Now that you're getting into

Double Hi-Res. you'll need to retrain your
mind to think of each byte as being 3 1/2 times
wider than it is high. In normal 280-dot Hi-
Res, if you were to draw a box 50 dots wide
X 50 dots high, the shape that would appear
on the screen would be roughly square; in oth-
er words, the width and height would be about
the same.

If you were to draw that same 50 dot x 50
dot shape on the Double Hi-Res screen, the
resulting shape would be roughly twice as high
as it is wide. This is because each Double Hi
Res dot is roughly twice as high as it is wide.
This means that as you go about designing
your shapes for Double Hi-Res, you'll need
to use two squares (dots) across on your graph
paper to equal one square (dot) of height. This
will make for some rather strange looking

shapes as you draw them on paper; however,
they should look properly proportioned once
you've placed them on the screen.

Preparing to Use the Double Hi-Res Screen

At this point it may seem like I'm jumping
the gun; however, I'm going to ask you now
to enter some machine language utilities.
When dealing with the Double Hi-Res screen,
you'll need to enter a lot of POKEs to get
things going. You'll also need some special
utilities 0 simulaie Applesoft commands.
These routines will prove quite uscful as we
proceed.

The routines that we will now begin to build
will be the first parts of the DHR driver that
we will develop in this series. If you've been
going through the Graphics Workshop series
with us, you'll remember that the first part of
our driver was the YTABLE routines. This set
of routines is comprised of three parts:

LISTING 1: YTABLE HEX DUMP

9464- A4
9468- 85
9470- 80
9478- 48
9480- 00
9488- 80

06 81
26 Bl

CE
EE

1. The YADDR routine which is used to re-
trieve Hi-Res screen addresses from a table
and place them in memory addresses $26
and $27 (HBASL and HBASH).

The SETUP routine which must be CALL-
ed to initialize the YTABLE pointers before
any machine code drawing routines can be
used.

The actual wble of screen addresses.

We will use YTABLE rather than the regular
screen address location routines (HPOSN), as
table look-up is much faster with these.

»

»w

Listing 1 is a complete hex dump of all three
parts of YTABLE, and Listing 2 is a
disassembly of the YADDR and SETUP parts
of the routine. If you already have the
YTABLE routines on disk from the Graphics
Workshop series, you're in luck. Simply
BLOAD them into memory, then enter the new
hex bytes for YADDR and SETUP from
Listing 2, and you're all finished. The reason
that this YTABLE is so much shorter is that
we don't need the page 2 high bytes, since
Double Hi-Res doesn't use any addresses on
HGR page 2.

For more information about entering
machine code and binary files into memory,
refer to the Welcome to New Nibble Readers
section in this issue. You should save YTABLE
to disk with the command BSAVE YTABLE,
A$9464,1$19C.

CALL 3799 to Set the YTABLE Pointers

To use YADDR 1o find screen addresses,
you will POKE the value of the current Y-
coordinate (0-191) that you are dealing with in-
to memory location 6, then CALL 37988
(YADDR). YADDR will place the memory
address of the leftmost two screen columns
(columns 0 and 1) into memory locations $26
and $27 (decimal 38 and 39). Our machine
code drawing routines will look to these loca-
tions to find which screen address they are to
use. To retrieve that address in decimal form
(from Applesoft). enter:

PRINT PEEK (38)+PEEK(39)%256

Remember that while the addresses for
columns 0 and 1 will be the same, the physical
location of the address for column 0 will be
in auxiliary memory, and the physical loca-
tion of the address for column 1 will be in your
Apple’s main memory.

LISTING 3: THE HOME, HGR, INIT, AND KILL ROUTINES

0630 81
TOTAL PROGRAM CHECK IS

LISTING 2:
DISASSEMBLY OF YADDR AND
SETUP ROUTINES FROM YTABLE

0219C

9464- A4 06 Loy s06
9466- Bl CE LDA (SCE).Y
9468- 85 26 STA $26
946A- Bl EE LDA (SEE),Y
946C- 85 27 STA $27
946E- 60 RTS

946F- A9 80 LDA #380
9471- 85 CE STA SCE
9473- A9 94 LDA #$94
9475- 85 CF STA SCF
9477- A9 40 LDA #s40
9479- 85 EE STA SEE
9478- A9 95 LDA #$95
947D- 85 EF STA SEF
947F- 60 RTS

CHECK CODE 3.0
ON: YTABLE
TYPE: B

LENGTH: 819C
CHECKSUM: EE

SYMBOL TABLE

9428~ HGR
941C- HOME
9441- INIT
9432~ J1

944E- KILL

0000 ERRORS IN ASSEMBLY

sASH
1000
1010 #
1020 * DH.DRIVER
1030 *
1040 * BY ROBERT A DEVINE
1050 »
1060 * COPYRIGHT 1984 BY MICROSPARC, INC.
1070 *
1080 * S-C MACRO ASSEMELER
1090 *
1100
1110 .OR $941C
1120 .TA 800
941C~ A9 04 1130 HOME LDA #$04 ** CALL 37916
941E- 85 3D 1140 STA $3D
9420~ 85 43 1150 STA $43
9422- A9 07 1160 LDA #$07
9424~ 85 3F 1170 STA $3F
9424~ DO 0A 1180 BNE Ji
9428- A9 20 1190 HGR LDA W$20 ** CALL 37928
942A- 85 30 1200 STA $30
942C- 85 43 1210 STA $43
9426~ A9 3F 1220 LDA WS$3F
9430- 85 3F 1230 STA $3F
9432- A% 00 1240 J1 LDA 300
9434- 85 3C 1250 STA $3C
9436~ 85 42 126 A $42
9438~ A9 FF 1270 LDA WSFF
943a- 85 3E 1280 STA $3E
943C- 38 1290 SEC
9430~ 20 11 €3 1300 JSR $C311 *» MOVE MEMORY TO AUX
9440~ 40 1310 RTS
9441- 8D SE CO 1320 INIT STA $COSE ** ANNUNCIATOR 3 OFF CALL 37953
9444- 8D 0D CO 1330 STA $C00D ** 80 COL N
9447- 80 S0 CO 1340 STA $COSO *# GRAPHICS OFF
944A- 8D 57 CO 1350 STA $C0S7 ** HI-RES
944D~ 60 1340 RTS
$44E- 8D SF CO 1370 KILL STA $COSF *x ANNUNCIATOR 3 ON CALL 37966
9451- 8D OC CO 1380 STA $C00C ** 40 COLUMN OFF
9454- 80 SI CO 1390 STA $COS1 ** TEXT oN
9457~ 8D 56 CO 1400 STA $C056 *= LOW RES OFF
9454~ 8D 00 CO 1410 STA $C000 ** 80 STORE OFF
945D- 8D S4 CO 1420 STA $C0S4 ** PAGE 2
7460~ 20 58 FC 1430 JSR $FC38 ** HOME CURSOR
9463~ 40 1440 RTS

KEY PERFECT 4. @
RuN ON

LENSTH. 1EC
CHECKSUN . €2

POKE 6Y: CALL 37988
to Get Screen Addresses
The address stored in $26 and $27, plus the
screen address offset (0-39), will be the final
location in memory where the actual drawing
will be done.

Special Utility Routines

Before we run our first tests, you'll need to
enter one more short set of routines which will
make housekeeping much easier. These
routines are shown in Listing 3 and are call-
ed HOME, HGR, INIT, and KILL. Enter
these routines beginning at address $941C.
Then save them to disk, after BLOADing
YTABLE, with the command:

BSAVE DHR.DRIVER,A$941C,LS1E4

Immediately after BLOADing your DHR
driver into memory, you should always pro-
tect it from strings by setting HIMEM. and
CALL 37999 to set the YTABLE pointers.

Now that we have a few utilities to work
with, let’s see what these routines do.

The INIT Routine — CALL 37953

This routine should always be used to get
your Apple into 560-dot Double Hi-Res mode.
It is the sequence of steps that is referred to
on pages 11 and 12 of your extended 80-column
card supplement. You will note that we have
tumed annunciator 3 off rather than on (as the
manual says), as this is the only way to make
things work.

The KILL Routine — CALL 37966

This routine is used to turn off your 560-dot
display and return to normal Apple text mode,
with the B0-column card off. Here we reset
all the switches that were set by the INIT
routine. The routine also ensures that the
B0STORE and PAGE2 soft switches are turned
off when leaving 560-dot mode. This routine
does not affect any graphics which you may
have drawn on the Hi-Res screens, so you may
re-enter Double Hi-Res with the INIT routine
and find your graphics intact. The final func-
tion of KILL is to use the normal HOME
routine to clear the text screen and send the
cursor HOME.

You should be aware that if you turn on the
80-column card using soft switches, you can
not turn it off using the <ESC> <CON-
TROL-Q> sequence described in the
manual. The only way I've found to get out
of the 80-column card is to either enter PR#3:
<ESC> <CONTROL-Q > <RESET >,
or use the KILL routine. The only time
<ESC> <CONTROL-Q > seems to work
is when you have tumned on the card with
PR#3.

The HOME and HGR Routines —
CALL 37916 and CALL 37928

You should immediately understand that
these routines are intended to simulate the
normal HOME and HGR commands from
Applesoft; i.c., they really don't do the same
things as their counterpart Applesoft com-
mands. Perhaps you would have selected dif-
ferent names for these routines — but since
I'm writing this, I get to pick the names!!

When you enter either the HOME or HGR
Applesoft command while in Double Hi-Res
mode, the only part of the screen display
affected is that part which is stored in main
memory. This means that entering either of
these commands while in 560 mode will only
clear one-half of the text or Hi-Res screen (the
odd columns).

Our driver HOME and HGR routines
duplicate the state of main memory in aux-
iliary memory by doing a memory move. In
other words, to ¢lear both arcas of Double Hi-
Res memory, you would enter HGR which
would clear Hi-Res main memory, then CALL
3M28 (HGR), which would duplicate the con-
tents of main memory in auxiliary memory,
effectively clearing both screens. The same
process would be used to clear the text screen.

This method could just as easily be used to
turn both screens to a solid background color
or some other pattern you might choose. If,
for instance. you wanted to turn the entire
screen white, you could first set normal Hi-
Res to white, and then CALL 37928 (HGR).
which would also change the Hi-Res screen
in auxiliary memory to white.

Special Notes About
the HOME and HGR Routines

The first thing you must be sure of before
using HOME or HGR is that the 80STORE
soft switch is turned off. If 80STORE is on
when you use these routines, they will not
work. 8OSTORE can be turned off with POKE
49152,0. It can then be turned on again after
using HOME or HGR with POKE 49153,0.

The second thing you should know is that
both routines can also be made to duplicate
(move) auxiliary memory to main memory. By
entering a single POKE, you can change the
direction of the memory move.

POKE 37948,24 will cause auxiliary
memory (0 move (o main memory.

POKE 37948,56 will causc main memory
to move to auxiliary memory.

These POKEs simply change the instruc-
tion in line 1360 to either SEC (SEt Carry)
or CLC (CLear Carry).

Testing the Double Hi-Res Screen

Now that we've prepared a few utilities
which will help us out, let's sce what the
Double Hi-Res screen looks like. You'll now
need to have the DHR driver in memory.

The first thing to do is CALL 37953 (INIT).
At this point, you are in 560-dot mode with
full-screen graphics. You will note that the
INIT routine does not clear the screen; this

is so that your program can enter and exit
560-dot mode without affecting anything that
you might have previously stored in Hi-Res
memory.

Next, enter HGR and you will note that
some of the garbage will disappear from the
screen; however, it will probably still contain
some vertical white bars which represent the
daia bytes in auxiliary memory. The HGR
command will also change your mode to
‘mixed text and graphics. You may still use the
normal POKEs/PEEKs at locations 49234 and
49235 to change to full-screen or mixed text
and graphics.

The bars are still on the screen because
HGR only clears the Hi-Res arca in main
memory. To clear the rest of the screen, CALL
3728 (HGR), which will clear the Hi-Res
memory area on the 80-column card. There
are other ways to clear memory on the
80-column card, but I have chosen this method
of memory duplication because it may have
many other useful applications in your
programs.

Now enter HOME and then CALL 37916
(HOME), which will also clear the text
window, again by the memory duplication
method. If you now hold down the RETURN
or left arrow key, your cursor will soon ap-
pear in the text area. At this point, you're ready
to begin drawing on the screen.

A Matter of Terminology

In the Extended 80-Column Text Card
Manual, the area of main memory (for either
text or graphics) is called page 1, and the area
of auxiliary memory (for either text or
graphics) is called page 1X. For the balance
of our discussion, we will refer to these two
areas of memory as text pages 1 or 1X, and
graphics pages 1 or 1X, to be consistent with
the manual.

Now that we're in 560-dot mode, let’s see
how we can exit and return to normal text
mode. If you try to exit with <ESC>
<CONTROL-Q> as recommended in the
manual, you'll find that nothing happens. The
TEXT command will get you out of 560-dot
mode; however, you will still have 80-column
text.

If all else fails, you could always resort to
<CONTROL > <RESET >, which is a
reasonably sure way to recover from anything.

But in this case, I'd suggest CALL 37966
(KILL), which returns you to normal text
mode and clears the text screen. This routine
also resets the soft switches to their proper
positions. If by chance your program has
changed RAMRD, RAMWRT, or ALTZP
switches (refer to your manual for a discus-
sion of these switches), you'd better be sure
to have your program reset them as well.

When you CALL 37953 (INIT) again, you
will return to 560-dot mode with the screen
nice and clear. just like you left it

Next, enter:
HCOLOR=3: HPLOT 13,0 TO 13,159

As strange as it seems, you should have got-
ten a red line down the screen, even though
you set HCOLOR to white, and you only
drew one vertical line.

Now enter:

HPLOT 100 TO 10,159

EGADS!!! What's going on here? Your
Apple doesn’t have a Hi-Res pink. but — sure
enough — you should be looking at a vertical
pink line. In fact, we still have HCOLOR set

10 white.

The 16-Color Connection

One of the exciting “freebies™ that comes
along with Double Hi-Res (and doesn't seem
{0 be mentioned in the manual) is the fact that
you can now generate 16 colors on the Double
Hi-Res screen.

From now on, when using Applesoft with
Double Hi-Res, the only HCOLOR values that
you need use are HCOLOR=3 (white, wrn
adoton) and HCOLOR=0 (black. turn a dot
off).

Let's take a moment to clarify what this
560-dot resolution is all about. If you are
drawing on the Double Hi-Res screen in white
or black, you will have 560-dot horizontal
resolution, just as advertised. If you are draw-
ing shapes or the background in color, you will
still have 140-dot resolution, exactly the same
as with normal Hi-Res: however. you will now
have your choice of 16 different colors.

In normal 280-dot Hi-Res, white is
generated by having two adjacent dots turned
on, and black is the result of having two ad-
jacent dots turned off. In 560-dot mode, white
or black are created by having four adjacent
dots turned either on or off.

In 560-dot mode, the status of bit 7 is totally
ignored, which simply means that whether it
happens to be on or off is unimportant, as it
has no effect on the color that 1s displayed.

Since the screen dots in 560-mode are only
half as wide as those of normal Hi-Res, this
means that four dots will fit in the same space
as two regular Hi-Res dots. As it happens,
there are 2#2+2%2 =16 different ways that you
can arrange those four adjacent dots; thus the
choice of 16 different colors.

When we drew our first vertical line at 13,
we changed the pattern of one of those groups
of four dots, causing red to appear. We then
drew our next vertical line at 10, and changed
the pattern of that same group of four dots,
which changed the color to pink.

Now that we know there is a choice of 16
different colors, let’s run a short program 1
see just what these 16 colors look like.

Listing 4 is a short program that will display
all 16 colors. You will notice that our special
utilities have made it very easy for us to get
into 560-dot mode, clear the screen, and run
the display. We could have drawn the bars with
HPLOT statements (which in this case would
have actually been a bit faster); however, this
method will help you get used to working with
the driver routines. At the end of the demo,
simply press any key and the KILL routine
will return you to normal text mode with the
80-column card off.

‘We've begun by drawing our colors on page
1X, and at the end (line 150), we've duplicated
our display on page 1 by setting the proper
POKE:s and using the HGR routine. Each of
the vertical bars that were drawn on the screen
are four dots wide.

Special Note: You'll notice that we used a
GET AS statement in the last line of our demo,
‘When we executed this statement, the last byte
of the YTABLE Address Table was damaged,
50 you should always be sure to sct HIMEM
to protect your driver routines whenever you
use them.

Now let’s look at the Hi-Res colors (Figure
2) and find out what bit patterns make what
colors. You should bear in mind that all of the
bit patterns shown in Figure 2 are really
reversed from their normal direction. The bit
patterns placed on the screen arc always placed
in reverse order. For example, a byte with the
value 11 ($B) which has a bit pattern of
00001011 would appear on the screen as
1101000, with bit 7 ignored.

FIGURE 2: THE HI-RES COLORS

Nibble Bit Color.
Value Patiern Deseription

0 0000 Black

1 1000 C

2 0100

v 1100

4 0010

s 1010

6 0110

7 1110

5 0001

Now that we know what the colors look like,
let’s try out another test. Reload the driver,
clear the Hi-Res screens and text window, then
try this:

HCOLOR=3
FOR Y=0TO 180 STEP 20: HPLOT 00 TO
279Y: NEXT

This will draw 10 lines on the screen, with
each succeeding line at a greater angle. You
will note that the lines on the screen have holes
in them (this is because you're only drawing
on page 1), and that the lines become more
and more jagged as they become less and less
horizontal. This is one of the drawbacks 0
using HPLOT statements in Double Hi-Res
and is the result of the dots being twice as high
as they are wide.

Now enter POKE 491530 which turns on
the 80STORE soft switch, allowing you to
select the page on which you want to draw.

Then enter POKE 492370, which sets the
page 2 swilch to select page 1X. Again enter:

FOR Y=0 TO 180 STEP 20: HPLOT 0,0 TO
2MY: NEXT

This time you have drawn the exact same
pattern of lines in the even columns of page
1X. You did not, however, do anything to im-
prove the appearance of the lines or fill in any
of the spaces, except on the one horizontal linc.
If anything. the quality of the lines has gotten
worse.

Take a bit of time now to try out your own
experiments and when you're ready, we'll look
alittle deeper into a method of drawing on this
new graphics screen.

If you've taken some time trying to HPLOT
lines, shapes, or whatever on the screen,
you've probably found that things don't always
work out quite the way you expected. So let’s
take another more closely-detailed look at how
the screen is laid out.

In this part of our discussion, we will be
looking at the screen information shown in
Figure 3.

This figure represents only three leftmost
addresses on the screen, $2000-$2002, which
are located at the top of the screen at Y-
coordinate 0. To help you get a clearer picture
of how the colors work on the screen, these
bytes will contain five blocks of color (pink,
medium blue, yellow, orange, and light green),
with each color arca cight dots wide.

If you tried when you conducted your own
tests to enter some HPLOT statements with X-
coordinates greater than 279, you quickly
found that your Apple quite firmly rejects all
such attempts with the familiar ILLEGAL
QUANTITY ERROR. So how do you HPLOT
all 560 Double Hi-Res dots?

Justas you've already discovered that there
are duplicate memory addresses where screen
data is stored, you now need to understand that
there are also duplicate HPLOT coordinates
on the screen. When drawing on page 1X, an
HPLOT 0,0 will plot a point at the very left-
most dot on the screen; however, when on

page 1, an HPLOT 0,0 will plot a point at
position 7 in the 0-559 range
So even though Figure 3 shows the status
of the leftmost 42 screen dots, if you tried an
HPLOT 40)Y (regardless of whether you're on
page 1 or page IX), lhe resulting point would
It

nowhere near the area of the screen that our
figure describes. It should be quite obvious
from looking at the information in Figure 3
that you must be a lot more careful when using
the Double Hi-Res screen. You'll need to do
more advance planning when it comes (o shape

and —

10 be sure that your colors stay the

COLOR BLOCKS (TOTAL OF 140)

’7‘ SCREEN DATA BYTE-BIT PATTERN (BITS 0-6)

FIGURE 3

o

BIT

NOT USED

a

3456

574
[ToToli i ToTo DX onscreex

4

76 s 43210
[ofoToTi [iToTor] mwmemory

HORIZONTAL COORDINATES (0-559)

X-COORDINATE REQUIRED TO “HPLOT"' THIS HORIZONTAL COORDINATE (0-279)

BIT #
PINK MEDIUM BLUl— YELLOW ORANGE ~—GREEN
It 9 q 10
10011100|]|1001100|n1||o|||[001|0011]011n|0||o|nu
0 1234560123456 012345601234856/0123485501234356
lDﬂllOOIllOOllOOOlIIDlIl()OlIDOIIDIIUUIIUUﬂ
25 103 56 103 108 12+-BYTE VALUE
o 1234 s 6|01 23 4 s 67 89 01237 8 9 10112 13[18 1506 17 18 19 20[18 13 16 17 15 19 20
o v 2 3 4 s 6|7 8 9 10 a2 13]1e 1516 17 18 19 20[21 2 2 24 25 26 27|28 29 30 31 32 3 M35 3 37 38 9 40 4
YTE
0 1 2 3 4 s ~ ¥
f*——PAGE 1X PAGE | PAGE 1X PAGE 1- —=t*——PAGE |X —*{ PAGE 1
- ~$2000 N P $2001 4 I $2002————
DDRESS
0 1 2-A

FFSET

way you want them, in order for your graphics
to work out the way you envisioned them

Now that you know what the bit patterns
look like in Figure 3, let's try out a few ways
that we might draw five vertical bars with the
colors shown in Figure 3.

Listing 5 shows onc way that we could go
about this task by using HPLOT statements.
In this program, we have developed some
formulas which automatically determine
whether we want to draw on page 1 or page
1X, based on the value of the X-coordinate
(0-559) that we have selected.

Line 600 determines which column (0-79)
we're in and flips the proper soft switch. Lines
610 and 620 take the X-coordinate that we've
selected and translate it into the proper HPLOT
X-coordinate that we really want (0-279).

You will probably want to use lines 600-620
as a subroutine in your programs that use
HPLOTS. You should note, however, that this
will only work with vertical lines. Horizontal
or diagonal HPLOT lincs will tend to cross
over from page o page, and will require their
own type of special handling.

Finally, Listing 6 shows how we can create
the same five-color bars by directly POKE-
ing the proper bit patterns into memory on
pages 1 and 1X. You should remember that
the value you POKE will have a bit pattern
that is the reverse of the bit pattern you want
to see on the screen.

Let’s take the bit pattern from page 1X, ad-
dress 0, as an example. You will note that the
pattern appearing in this byte is 1001100. The
value that we want to store here will have a
bit patiern of (high bit O or 1) + 0011001, which
in this case is 25 with the high bit set to 0.

You should also note that simply placing a
value into any given byte does not assure you
of getting the color you may want. If you look
at Figure 3 again, you will note that byte/
columns | and 3 have exactly the same bit
patiern and the exact same value. However,
column 1 contains one dot of pink and six dots
of medium blue, while column 3 contains three
dots of yellow and four dots of orange. This
is because the bits do not line up with the color
blocks which are shown above cach byte.

If you look closely at Figure 3, you will
notice that the left edge of the color block and
the left edge of the byte line up evenly on col-
umn 0, and do not line up evenly again until
you reach the left edge of column 4. Therefore,
if you wanted to fill the screen, or part of the
sereen, with some solid color, you would need
to deal with four different values (bit pattcrns)
which would repeat every four columns.

Another Double Hi-Res Page

So far we've only talked about Double Hi-
Res pages 1 and 1X; however, there is another
560-dot graphics page available to you. This
second Double Hi-Res page (which is not
mentioned in the manual) is analogous to
HGR2 and resides in memory addresses
S4000 throueh SSFFFE. These Hi-Res nages are
salled pages 2 and 2X, and they are designed
sxactly the same way as pages 1 and 1X, the
only difference being in the addresses used.

To access this second Double Hi-Res screen,
you must turn off the 80STORE switch with
POKE 49152,0 and turn on the page 2 switch
with POKE 492370,

This second 560-dot screen can be very
useful for nonanimated title pages or other in-
formation; however, it does not appear to be

useful for animated graphics. The problem

with using this page is that your 80-column
firmware seems to continually turn on the
80STORE switch every time access is made
to either Double Hi-Res screen, thus pre-
venting display of this second screcn and caus-
ing considerable screen flicker.

I'm sure that at some point, someone will
find this to be an intolerable situation and find
a way around the problem; but for now, only
pages 1 and 1X are available for animation.

Loading Title Pages onto Pages 2 and 2X

If you want (o build display graphics for
pages 2 and 2X, you'll need to create two sep-
arate disk files: one to contain the data for the
even columns, and the second to contain the
screen data for the odd columns. Your best bet
will be to create your graphics on pages 1/1X
50 that you can see your work.

Once your graphics are completed, follow
these steps to save the title page to disk:

1. BSAVE TITLE.ODD,A$2000,L$2000,
which will save the odd columns.

2. Enter a line similar to line 150 (Listing 4)
which will move the screen data from aux-
iliary to main memory.

3. BSAVE TITLE.EVEN,A$2000,L$2000,
which will save the even columns.

Now, to reload the title onto pages 2/2X for
display. follow these steps:

1. BLOAD TITLE.EVEN,A$4000, which
will load the even columns.

2. Enter POKE 61,64: POKE 6395: CALL
37938, This uses part of our HGR routine
(we enter at line 1310) to move the contents
of page 2 onto page 2X.

FIGURE 4: MAP OF THE DHR DRIVER

LISTING 4: COLOR.DEMO

HOME . CALL 37916 REM CLEAR TEXT WINDON

30
a0

VTAB 22 PRINT "0 1234567 R
39°

50 PRINT ol 2 ¥

60 PRINT BLE M) -RES <X

70 POKE 43153 0 "hOKE 49237 0 REM SELECT PAG
1x

100 FOR X - 6 70 15

120 FOR Y = 0 TO € 8.V. CALL 37983:A0D

POKS
s - FEEC (38) o TPEEK (39)

130 POKE ADDRESS + X » 2,X

180 NEXT Y.X

150 POKE 40236.0 POKE 49152.0 37948 24
ALL 37928 REM DUPLICATE PAGE 1x onio >

160 ma 10° GET A CALL

GE} 37966 REM TURN OFF
0 DOT GRAPHICS MODE

post HEX DECIMAL
$9600
SCREEN
ADDRESS
TABLE
————— $9480
SETUP
$946F 37999
YADDR
” $9464 37988
KILL
$944E 37966
INIT
$9441 37953
HGR
—— $9428 37928
HOME
———— $9%4IC 37916

3. BLOAD TITLE.ODD, A$4000, which will
load the odd columns of your display.

4. Make sure to POKE 491520: POKE
49237, to display the graphics.

Since your graphics page will total 16384
bytes, it would be helpful to use some sort of
fast DOS paich so that it doesn'ttake too long
to get your graphics on the screen.

Turning the 80-Column Card On and Off

1 think it might be worthwhile to spend a
moment looking again at how we enter and
exit the 80-column card. In our demonstra-
tions, we have used the INIT and KILL
routines to enter and exit Double Hi-Res, and
we used the Applesofi HOME and our own
HOME routine to clear the text arca. As it
happens, we have not yet actually turned the
card on. The text that we generated had
80-column-sized letiers, but we were only able
to print in the odd columns. This meant that
we could only place 40 characters on the
screen.

If you're not going to need 80 columns of
text, what we've done so far is enough: how-
ever, if you need true 80-column text, you'll
need to actually turn the card on. This can be
tricky, and if done incorrectly can result in the
loss of the DOS hooks, and even your Apple-
soft program pointers. | learned both of these

lessons through experience.

Proper Syntax for Double Hi-Res
With 80-Column Text

* To enter Double Hi-Res:
CALL 37953 {The INIT routine}
PRINT CHRS$(4)“PR#3" {This can be

used in place of HOME: CALL 37916
(HOME)}

* To exit:

LISTING 5: BAR.DEMO1

|
SET FOR FULL SCREEN GRAP

PRINT CHRS(12);CHRS(21) {This acts
like <ESC> <CONTROL-Q> and
retains DOS

CALL 3766 {The KILL routinc}

Mixing up the order in which you cnter or
exit can cause strange results. BEWARE!!

Conclusion

When [sat down to write this series, I was
planning to get into some of the Double Hi-
Res block routines, with some animation
ideas, in Part 1. As it wrned out, the process
of laying the groundwork for Double Hi-Res
took longer than T had expected, so we'll begin
working with ammauon techniques next
month. See you then!

‘The Double Hi-Res Manual

The first thing you'll need to know about
the Extended 80-Column Text Card Supple-
ment (mine has the number 030-0496-A on the
back) is that this manual has lots of bugs!
So far I've found six separate errors/typos in
the manual. If you try to follow the instruc-
tions in the manual, you won't be able to make
the new Double Hi-Res work!!

At this point, I'd suggest that you wrn 0
pages 11 and 12 in the manual and change the
instructions ““Turn on the annunciator 3 soft
switch.. " to *“Turn off the annunciator 3 soft
switch...!

Annunciator 3 is turned off with either
POKE 492460 or STA $COSE.

Suggested Reading

Duc to the way that Double Hi-Res is
designed, the most efficient way to work with
it is by using machine language routines to
store specific data bytes on the screen. In other
words, block shapes seem like the best way
10 go. (This does not mean that you can't use
the HPLOT statement from Applesoft; we will
also use this statement in many of our tests.)
The driver that we'll develop, as well as most
of our experiments, will deal with block
shapes.

For a complete discussion of normal 280-dot
block shape usage, see “Graphics Workshop:
Block Shapes Part 1" (Nibble Vol. 4/No. 3).
1 think that once you've gotten the block shape
concepts down firmly, it will make your tran-
sition to Double Hi-Res block shapes a lot
easier. Double Hi-Res block shapes will be
a bit more complex and require a greater
understanding of the physical design of the Hi-
Res screens.

50 POKE 49234.0. REM
HICS
60 HCOLOR= 3
FOR X = 1 T0 22: READ XCOORD GOSUB 609 NEXT
X
110 DATA 4.7.8.9,12,13.17.18,19.21,22,23
26,27, 963133734037 38
500 END
600 POKE 40236 0.COLUMN = INT (XCOBRD / 1. IF
2'- (COLUMN /'2) THEN POKE
€10 XC = INT (COLUNN / 2) + XCORRD / 7 - COLUM
620 XC = INT (XC + 7 + 5): HPLOT XC.0 TO XC.1
50 RETURN
LISTING 6: EAR DEMDZ
1 REM
2 REM
3 REM
4 oREm
5 REMm .
§ REM . LINCOLN. WA 01773
7 Rew et
10 PRINT OHRS (4)“BLOAD DHR DRIV

R
15 CALL 37995 HIMEM. 37888 REM SETUP YTAsLe

XT WIN

50 POKE 49234.0. REW ST FOR FULL SCREEN GRAP
Hics

100 POKE 49237.0° REM SELECT PAGE 1X

118 FOR ADORESS - 010 Z: READ BYTE: Gosus 500
NE)

120 POKE 492361 a usu SELECT PAGE 1

138 ror apofess 0 2. READ BYTE: COSUB 508

Lao OATA" 25 %6 108,103,103, 12

200 END

$98 FORY - 0T0 150: POKE 6.Y: CALL 37983; POKE
EEK (38) - 26 + s By

NEXT Y RETORN

Routine
Name

SETUP
YADDR
KILL
INIT
HGR
HOME

Special POKES 1o
POKE 6,Y Place

before using the

page 1X to page

page | 1o page |

TABLE 1: SUMMARY OF DHR.DRIVER ROUTINES

Call Hex

Address Address Routine Function

37999 $946F Set YTABLE pointers

37988 39464 Store screen address in $26-$27
37966 SOME Exit Double Hi-Res mode.

37953 $9441 Enter Double Hi-Res mode

37928 $9428 Move graphics page to graphics page
37916 $941C

Move text pag

10 text page

use with the driver.

Y-coordinate which you want an address for into location 6
YADDR routine

POKE 37948,24 Set HGR and HOME routines to move memory from

POKE 37948,56 Set HGR and HOME routines to move memory from

X.

How 560-Dot Double Hi-Res Is Designed

When working with Double Hi-Res, you
will always be working with Hi-Res graphics
page 1. which begins at memory address
52000 (8192 decimal) and ends at memory ad-
dress S3FFF (16383 decimal). This arca of
memory (as described on p. 34 of your Apple
Jle Reference Manual) is 192 bytes high and
40 bytes wide, for a total of 8192 bytes. Each
of the 40 horizontal bytes is capable of display-
ing 7 dots on the screen; 40 bytes wide x 7
dots = 280 dots horizontally.

So, you ask, how do 280 dots make 560
dots? What they've done is to use the 8192
bytes from normal Hi-Res page 1, plus another
8192 bytes from the extended 80-column card
to make up the 16384 bytes needed for the
560-dot display.

You should understand at this point that the
64K of auxiliary RAM on the extended
80-column card ‘is not additional RAM;
rather, it is duplicate RAM, with exactly the
same range of memory addresses as you
already had when you bought your Apple. This
mens that there is also a block of memory
addresses on the ‘extended 80-column card

Double Hi-Res Graphics | (Cont.)

The Double Hi-Res Manual

The first thing you'll need to know about
the Extended 80-Column Text Card Supple-
ment (mine has the number 030-0496-A on the
back) is that this manual has lots of bugs!!!
So far I've found six separate errors/typos in
the manual. If you try to follow the instruc-
tions in the manual, you won't be able to make
the new Double Hi-Res work!!

At this point, I'd suggest that you turn to
pages 11 and 12 in the manual and change the
instructions “*Turn on the annunciator 3 soft
switch...” to ““Turn off the annunciator 3 soft
switch...”

Annunciator 3 is turned off with either
POKE 492460 or STA $COSE.

Suggested Reading
Due to the way that Double Hi-Res is
designed, the most efficient way to work with
it is by using machine language routines to
store specific data bytes on the screen. In other

words, block shapes seem like the best way
1o go. (This does not mean that you can't use
the HPLOT statement from Applesoft; we will
also use this statement in many of our tests.)
The driver that we'll develop, as well as most
of our experiments, will deal with block
shapes.

For a complete discussion of normal 280-dot
block shape usage, see “*Graphics Workshop:
Block Shapes Part 1" (Nibble Vol. 4/No. 3).
I think that once you've gotten the block shape
concepts down firmly, it will make your tran-
sition to Double Hi-Res block shapes a lot
easier. Double Hi-Res block shapes will be
a bit more complex and require a greater
understanding of the physical design of the Hi-
Res screens.

How 560-Dot Double Hi-Res Is Designed

When working with Double Hi-Res, you
will always be working with Hi-Res graphics
page 1, which begins at memory address

$2000 (8192 decimal) and ends at memory ad-
dress $3FFF (16383 decimal). This area of
memory (as described on p. 34 of your Apple
/le Reference Manual) is 192 bytes high and
40 bytes wide, for a total of 8192 bytes. Each
of the 40 horizontal bytes is capable of display-
ing 7 dots on the screen; 40 bytes wide x 7
dots = 280 dots horizontally.

So, you ask, how do 280 dots make 560
dots? What they've done is to use the 8192
bytes from normal Hi-Res page 1, plus another
8192 bytes from the extended 80-column card
to make up the 16384 bytes needed for the
560-dot display.

You should understand at this point that the
64K of auxiliary RAM on the extended
80-column card is not additional RAM;
rather, it is duplicate RAM, with exactly the
same range of memory addresses as you
already had when you bought your Apple. This
means that there is also a block of memory
addresses on the extended 80-column card

