BLOCK SHAPE
ANIMATION IX -

DOS 3.3

Byte-sized block shapes move faster and take less code than larger
O |block shapes. This month’s Graphics Workshop returns from the (0]
0 | exploration of Double Hi-Res Graphics to normal Hi-Res block shape | 0

GRAPHICS
WORKSHOP

ProDOS

animation with some routines that will move single-byte blocks at lightning speed.

by Robert R. Devine, Computers and You,
1855 N. West Ave., El Dorado, AR 71730

Workshop series we developed a variety

of machine code routines for use in Apple
graphics animation. The routines are general
enough to be used with block shapes of any
size, from a single byte to shapes large
enough to fill the entire Hi-Res screen. A
recent program that I was working on re-
quired that almost all the shapes be no larger
than seven dots (one byte) wide. I've also
noticed that in many of the commercial pro-
grams now flooding the market, the authors
used shapes only one byte wide to achieve
maximum execution speed.

To meet my program needs 1 developed
a special set of block shape routines designed
specifically for shapes one byte wide. The
routines that I modified for one-byte wide
shapes were DRAW, SHIFTDN, SHIFTUP,
SHIFTR and SHIFTL.

So, you say, if our existing routines already
do the job, why bother with new ones? There
are three major benefits. First, you’ll need
one less POKE to set the parameters for the
SHIFTing routines. Second, since they don’t
waste time checking for HR and HL, the
routines execute much faster (our ultimate
goal!). Finally, we’ll find that the new one-
byte wide routines are much shorter. Table
1 shows that the one-byte routines save 127
bytes compared to the old routines, and there
is an obvious improvement in execution time
when working with small shapes.

These new routines are designed to fit
below our other driver routines, ending just
below DRAWDN. The routines are, however,
totally relocatable, so if you wanted to you
could load them into memory at $92B5 along

In earlier installments of the Graphics

with YTABLE and YADDR, to create a
completely new driver for shapes one byte
wide. First, you will need to determine the
new CALL addresses for each routine.

THE ONE-BYTE ROUTINES

DRAW $8F9A (CALL 36762) draws a one-
byte wide block shape. There are a few
differences between the use of this DRAW
and our multi-byte DRAW. Since your shape
tables will be smaller, you will probably want
to pack several shapes on a given memory
page. Therefore, this DRAW requires that
you specify both the high byte (POKE 251,
SHPHI) and the low byte (POKE 250,
SHPLO) of the address where the shape table
is stored in memory.

Next, you'll need to set VT (POKE 252,
VT) and VB (POKE 253,VB) in the normal
fashion. Since HR and HL will now be the
same, we’ll simply rename this value HB
(POKE 254,HB). This DRAW does not have
an EOR (erase function), so you can simply
erase with 00 bytes.

The final difference is that this DRAW
doesn't allow shape tables to run over onto

TABLE 1
Comparison of Routine Lengths
Length of
Length of One-byte
Routine Name Old Routine Routine
DRAW 50 bytes 30 bytes
SHIFTR 80 40
SHIFTL 89 46
SHIFTD 54 42
SHIFTU 58 46
Total 331 bytes 204 bytes

the next memory page. Since the shapes are
smaller (a maximum of 192 bytes) this
should be easy to deal with, plus it avoids
wasting time checking for page overflow. The
following parameters are required:

POKE 250,SHPLO

POKE 251,SHPHI (formerly SHNUM)
POKE 252,VT

POKE 253,VB

POKE 254 ,HB (the HR/HL value 0-39)

SHFTDN $8FB8 (CALL 36792) shifis the
shape down one Y-coordinate. This one-byte
routine works exactly the same as our multi-
byte SHFTDN, except that here you need
only three routine parameters:

POKE 252 VT
POKE 253VB
POKE 254, HB

SHIFTUP $8FE2 (CALL 36834) shifts
the shape up one Y-coordinate. This routine
works the same as SHIFTDN, and requires
the same three parameters.

SHIFTR $9010 (CALL 36880) shifts the
shape right one dot. Unlike our multi-byte
horizontal shifting routines, which required
that an extra byte be added ahead of the
shape, this routine takes care of the problem
automatically. To use SHIFTR, you just set
the three parameters for VT, VB, and HB.

To use the routine, CALL or JSR SHIFTR
seven times, then use the INCHB routine
(CALL 36966), which will INCrement HB
in readiness for the next seven shifts right-
ward. If you shift rightward more than seven
times without INCrementing HB, your shape
will begin to disappear from the screen.

SHIFTL $9038 (CALL 36920) shifis the
shape left one dot. This routine also takes
care of providing a shifting byte, and the only

parameters that need to be set are VT, VB
and HB. To use SHIFTL, CALL or JSR
SHIFTL seven times, then use the DECHB
routine (CALL 36975) to DECrement HB for
the next seven shifts. Again, more than seven
shifts without changing HB will result in the
loss of your shape.

INCHB $9066 (CALL 36966) INCrements
HB for horizontal shifting. It has built-in pro-
tection preventing it from allowing HB to be-
come greater than 39. DECHB $906F (CALL
36975) DECrements HB and prevents it from
going to a value less then 0.

In the event that your horizontal moving
shapes are likely to change direction, you
should be careful not to make a direction
change while the shape resides in more than
one horizontal byte. This simply means that
direction changes should only occur at the
end of seven shifts right or left.

Another thing we've done to speed execu-
tion time is eliminate the effort to control the
conditioning of bit 7 (the color bit). Since
horizontal one-dot shitting doesn’t work well
with color shapes anyway, we've allowed the
chips to fall where they may as far as bit 7
is concerned, which won't make a difference
with black and white shapes.

Another benefit of our new one-byte wide
shape routines is that these routines do not
make use of as many zero page bytes for flags
and holders. If you're calling the new rou-
tines from a machine language program, the
zero page addresses $F9, $07, $08 and $09
(which were used by the multi-byte shape
shift routines) will now be available for use.
We now simply use the Carry to hold the
horizontal bit shifting flags, and the X-
Register to hold the screen byte during verti-
cal shifting.

ENTERING THE ROUTINES

These new routines were created with the
S-C Assembler, as were the other driver rou-
tines. You can either enter them with an

assembler or simply type in the hex code
from Listing 1. It is a good idea to save the
new routines as a separate disk file rather
than adding them to our old block shape
driver. This way, you can load or leave them
as needed, or simply BLOAD them to some
other location to conform to your program'’s
memory configuration. Save them to disk
with the statement:

BSAVE BYTE.ROUTINES A$8F9A,
L$DC

To use the new routines you will need the
block routines developed in previous install-
ments of the Graphics Workshop. For those
who may have missed an issue, the hex code
of these routines is shown in Listing 2. Use
the Monitor to enter this code and save it on
disk with the command:

BSAVE BLOCK.ROUTINES,A$9076,
L$58A

For help in entering Nibble listings. see
“A Welcome to New Nibble Readers™ in the

beginning of this issue.

TESTING THE NEW ROUTINES -

To try out the one-byte routines, enter and
RUN the Applesoft program shown in List-
ing 3. (Save it to disk with the command:
SAVE BYTE.DEMO)

HOW THE PROGRAM WORKS

Lines 80-100 load the driver routines into
memory, initialize YTABLE and set HIMEM
to protect the driver. Lines 110-120 POKE
the shape of a small ball into memory at
$8F00. Line 130 sets up full screen graphics.

Line 140 establishes the starting param-
eters for DRAW. Line 150 DRAWS the shape.
Lines 160-190 move the shape up and down
on the screen using SHIFTDN and
SHIFTUP.

Line 200 sets the starting parameters for
DRAW and draws the shape on the left edge

of the screen. You’ll note that we didn’t
enter the POKE 251,SHPHI parameter since
it hadn’t changed since our last DRAW.
However, it was necessary to POKE 250,
SHPLO since the DRAW routine changes
this value as it steps through the shape table.

Lines 210-240 move the shape back and
forth across the screen. As we move the
shape we first CALL SHIFTR or SHIFTL
seven times, then CALL INCHB or DECHB
to change the HB value for the next seven
shifts.

INCREASING SPEED

As you can see, the shapes move quite
smartly about the screen, even though we're
still driving the shapes from Applesoft. If
you want to see some real fireworks, let’s
see what happens when we let our routines
run flat out in straight machine code.

The first thing you'll need to do is enter
the hex code shown in Listing 4. This is an
exact machine code translation of lines 140-
240. Save it on disk with the command:

BSAVE BYTE.ML,A$6000,L$7B

Next, delete lines 140-260 from BYTE
.DEMO and add this new line 140:

140 PRINT CHR$(4)‘BRUN BYTE
.ML”’

It makes quite a difference, doesn’t it?
Things are moving along at sych a clip now
that you'll think you're seeing the ball in
several locations at the same time. That’s
the power of one-byte block shape graphics!

Editor’s Note: The Graphics Workshop
series on block shape animation first ap-
peared in Vol. 4/No. 3. *‘Block Shape Ani-
mation, Part VIII'' (Vol. 5/No. 4) added the
final routines to the bluck shape animation
program, BLOCK.ROUTINES, shown in
Listing 2.

LISTING 1: BYTE.ROUTINES

0OFA-
00F8-
00FC-
00FD-
0OFE-
9391-
0026 -
F504-
F4D5-
0006 -
8F9A-
8F9C-
8F9E-
8FAG-
8FA3-
8FA5-
8FA7-
8FAQ-
8FAB-
8FAD-
8FAF -
8FBI-
8FB3-
8FBS5-
8FB7-
8FB8-
8FBA-
8FBC-
8FBE-
8FCO-
8FC3-
8FC5-
BFC7-
8FC8-
8FCB-
8FCC-
8FCE-
BFDI1-
8FD3-
8FD5-
8FD7-
8FD9-
8FDB-
8FDD-
8FDF -
BFEL-
8FE2-
8FE4-
8FE6-
BFEB-
BFEA-
8FEC-
8FEF-
8FF1-
8FF3-
BFF4-
BFF7-
8FF8-
8FFA-
8FFD-
8FFF-
9001 -
9003-
9005 -
9007 -
9009 -
900B-
900D-
900F -
9010-
9012-

93

Fa

2900
9910
2920
2930
2940
0950
0960
0970
0980
2990
1600
1010
1090
11008
1110
1120
1130

2300
2310

+ BYTE.ROUT INES

« BY ROBERT DEVINE
« COPYRIGHT 1985
« BY MICROSPARC. INC
= CONCORD. MA 091742
+ S-C ASSEMBLER
.
.

.OR $8F9A

TA $800
SHPLO .EQ SFA «« DECIMAL 250
SHPHI .EQ $FB = DECIMAL 251
VT .EQ S$FC -+ DECIMAL 252
VB .EQ $FD =» DECIMAL 253
HB .EQ S$FE =» DECIMAL 254
YADDR .EQ $9391

HBASL .EQ $26

INCRY .EQ $F504
DECRY .EQ $F4DS
YO EQ $06
DRAW LDX #@ +«= CALL 36762
LDA vB +« GET LOWEST Y-COORDINATE
STA YO «« STORE IN $6 FOR USE BY YADDR
L1 JSR YADDR += PUT SCREEN ADDRESS IN HBASL/HBASH
LDY HB «» SET ADDRESS OFFSET
LDA (SHPLO, X) =+ GET SHAPE BYTE FROM TABLE
STA (HBASL).Y «» PUT SHAPE BYTE ON SCREEN
INC SHPLO «» POINT TO NEXT TABLE ELEMENT
DEC YO ++ POINT TO NEXT HIGHER SCREEN BYTE
LDA YO »» FIND OUT WHERE WE ARE
CMP #S$FF +«+ OFF TOP OF SCREEN?
BEQ RTN s+ YES-GET OUT OF HERE
CMP VT ++ HAVE WE PASSED VT?
BCS L1 ++ NO-PROCESS NEXT TABLE ELEMENT
RTN RTS +«« WE'RE ALL DONE
SHFTON LDA V8 ++ CALL 36792
CMP #189 +« ARE WE TOO FAR DOWN?
BCS RTN1 ++ YES-GET OUT OF HERE
STA YO =» STORE IN $6 FOR USE BY YADDR
L2 JSR YADDR +» PUT SCREEN ADDRESS IN HBASL/HBASH
HB «+ SET ADDRESS OFFSET
LDA (HBASL).Y «+ GET BYTE FROM SCREEN
TAX «+ STORE IT IN X-REGISTER
JSR INCRY POINT TO NEXT LOWER ADDRESS
TXA RETRIEVE SCREEN BYTE
STA (HBASL) .Y RETURN BYTE TO SCREEN
JSR DECRY +«+ RETURN TO START ADDRESS
DEC YO +«+« POINT TO NEXT HIGHER BYTE
LDA YO ++ FIND OUT WHERE WE ARE
CMP #3$FF ++ OFF TOP OF SCREEN?
BEQ J1 «+ YES-GET OUT OF HERE
CMP VT «+ HAVE WE PASSED VT?
BCS L2 «+ NO-PROCESS NEXT SCREEN BYTE
J1 INC VB «+ BUMP VB AND VT FOR
INC VT «« NEXT DOWNWARD MOVE
RTN1 RTS =« WE'RE ALL DONE
SHIFTUP LDA VT «» CALL 36834
CMP #1 «+ WILL WE GO OFF TOP OF SCREEM7?
BCC RTN2 =+ YES-GET OUT OF HERE
STA YO «+ STORE IN $6 FOR USE BY YADDR
INC VB =+ GIVE US AN ERASE CUSHION
L3 JSR YADDR «« PUT SCREEN ADDRESS IN HBASL/HBASH
LDY HB «+ SET ADDRESS OFFSET
LDA (HBASL),Y ++« GET BYTE FROM SCREEN
TAX +«s STORE IT IN X-REGISTER
JSR DECRY ++ POINT TO NEXT HIGHER ADDRESS
TXA «+ RETRIEVE SCREEN BYTE
STA (HBASL),Y «» RETURN BYTE TO SCREEN
JSR INCRY ++ RETURN TO START ADDRESS
INC YO =2 POINT TO NEXT LOWER ADDRESS
LDA YO -« FIND OUT WHERE WE ARE
CMP #1990 «« ARE WE DOWN TOO FAR?
BEQ J2 ++ YES-GET OUT OF HERE
CMP VB «« HAVE WE PASSED VvB?
BCC L3 ++ NO-PROCESS THE NEXT BYTE
J2 DEC VB ++ REMOVE ERASE CUSHION
DEC VB +: BUMP VT AND VB FOR
DEC VT ++ NEXT UPWARD MOVE
RTN2 RTS +«s+ WE'RE ALL DONE
SHIFTR LDA VB ++ CALL 36880
STA YO «+ STORE IN $6 FOR USE BY YADDR

LISTING 1: BYTE.ROUTINES (continued)

9014- 20
9017- A4
9019- CO
901B- B@
901D- Bl
901F- 18
9020- 2A
9021- 91
9023- 2A
9024- C8
9925- Bl
9027~ 2A
9928- 91
902A- 88
9028- C6
902D- A5
902F- C9
9031- F@
9033- C5

91 93 2320
FE 2330
27 2340
1A 2350
26 2360

2370

2380
26 2390

2400

24190
26 2420

2430
26 2440

2450
26 24690
26 24790
FF 2480
04 2490
FC 2500
DD 2510

2520
FD 2600
26 2610
91 93 2620
FE 2630
22 2640
26 2650
7F 2660

2670
26 2680

2690
26 2708
24 2710
80 2729
092 2730
7F 2740

2750
26 2760

2779
26 2780
26 2790
FF 2800
04 2810
FC 2820
D7 2830

2840
FE 2850
27 2860
02 2870
FE 2880

2890
FE 2900
02 2910
FE 29290

2930

END OF LISTING 1

L4 JSR YADDR
LDY HB

CPY #3
BCS RTI

9
N3

LDA (HBASL).Y

CLC
ROL

STA (HBASL) .Y

ROL
INY

LDA (HBASL).Y

ROL

STA (HBASL) ,Y

DEY

DEC YO
LDA YO
CMP #S
BEQ RTI
CMP VT
BCS L4

FF
N3

RTN3 RTS
SHIFTL LDA VB

STA YO

LS JSR YADDR
LDY HB

BEQ RT!

N4

LDA (HBASL) .Y
AND #$7F

ROR

STA (HBASL) .Y

DEY

LDA {HBASL) .Y
3

BCC J

ORA #5$80

BCS J4

J3 AND #$7F

Ja ROR

STA (HBASL) Y

INY
DEC YO
LDA YO

CMP HSFF
BEQ RTN4

CMP VT
BCS LS

RTN4 RTS
[NCHB LDA HB
CMP #39
BCS RTN5

INC HB

RTNS RTS
DECHB LDA HB
BEQ RTNG6

DEC HB

RTN6 RTS

s
.
..
‘e
.
-
x

..

s

.o
.

.

..

e

.

.o

e

v

.

.

..

.

s

..

.

PUT SCREEN ADDRESS IN HBASL/HBASH
GET SCREEN OFFSET

CAN WE STILL MOVE RIGHT?

NO-GET OUT OF HERE

GET SCREEN BYTE

SET TO ERASE LEFTMOST DOT

SHIFT THE BITS RIGHT

RETURN BYTE TO SCREEN

GET THE PRE-SHIFTED BIT 6

MOVE TO NEXT BYTE -->

GET BYTE FROM SCREEN

SHIFT BITS RIGHT/MOVE UP OLD BIT 6
RETURN BYTE TO SCREEN

MOVE BACK TO HB

MOVE TO NEXT HIGHER ADDRESS

FIND OUT WHERE WE ARE

OFF TOP OF SCREEN?

YES-GET OUT OF HERE

HAVE WE PASSED VT?

NO-PROCESS THE NEXT BYTE

WE'RE ALL DONE

CALL 36920

STORE IN $6 FOR USE BY YADDR

PUT SCREEN ADDRESS IN HBASL/HBASH
SET ADDRESS OFFSET

IF WE CAN'T MOVE LEFT-GET OUT OF HERE

GET SCREEN BYTE

SET TO ERASE TRAILING DOT
SHIFT THE BITS LEFT

RETURN BYTE TO SCREEN

MOVE TO NEXT BYTE <--

GET SCREEN BYTE

PRE-SHIFTED BIT @ WAS @
PRE-SHIFTED BIT @ WAS 1/SET BIT 7
(RELOCATABLE JMP)

CLEAR BIT 7

SHIFT THE BITS LEFT

RETURN BYTE TO SCREEN
RETURN TO HB

POINT TO NEXT HIGHER ADDRESS
FIND OUT WHERE WE ARE

OFF TOP OF SCREEN?

YES-GET OUT OF HERE

HAVE WE PASSED VT?
NO-PROCESS THE NEXT BYTE
WE'RE ALL DONE

CALL 36966

IS 1T ALREADY 397

YES-GET OUT OF HERE
INCREMENT H3

WE'RE ALL DONE

CALL 36975

IF ALREADY @-GET OUT OF HERE
DECREMENT HB

WE'RE ALL DONE

KEY PERFECT 4.0
RUN ON
BYTE . ROUTINES
CODE ADDR# - ADDR#
2585 8F9A - 8FE9
28A9 8FEA - 9039
1E13 903A - 9075

PROGRAM CHECK IS : DC

LISTING 2: BLOCK.ROUTINES

9076- A9 00
9078- 85 FA
9080- 93 A4
9088- 26 91
9090- 02 E6
9098- FF B@
90A0- FF FO
90A8- D5 69
90B@- 85 06
90B8- 26 85
90C@ 91 26
90C8- FF F@
90D@- 06 A5

90D8- FC BY D7 E6 FC E6 FD
9QEQ- A5 FC C9 @1 90 33 E6
90E8- 85 06 20 91 93 A4 FE
90F@- 26 85 FS 20 D5 F4 A5
90F8- 91 26 20 04 F5 88 18
9100- FF F@ 04 C4 FF BO E8
9108- 06 A5 06 C9 BE FO 04
9119- FD 99 D7 Cé6 FD C6 FD
9118- FC 60 AS OE A6 FB 9D
9120- 8F 60 AS 00 8D 54 C@
9128- 40 85 E6 60 A9 99 8D
9130- CO A9 20 85 E6 60 20
9138- 91 18 90 @3 26 2C 91

9140-
9148-
9150-
9158-
9160-
9168-
9170-
9178-
9180-
9188-
9190~
9198-
91A0-
91A8-
91B@ -
91B8-
91CO-
91C8-
91D@-
91D8-
91E@-
91E8-
91F0@-
91F8-
9200-
9208 -
9210-
9218-
9220-
9228-
9230-
9238-
9240 -
9248-
9250-
9258-
9260 -
9268-
9270-
9278-
9280-
9288 -
9290-
9298-
92A0 -
92A8-
92B@-
92B8-
92CO-
92C8-
92D@-
92D8-
92EQ-
92E8 -
92F@-
92F8-
9300 -
9308-
9310-
9318-
9320-
9328-
9330-
9338-
9340-
9348-
9350-
9358-
9360-
9368 -
9370-
9378-
9380-
9388-
9390-
9398-

oE
20
91
20
91
8A
20
ES
08
8F
F8
FF
FE
FF
E6
26
00
02
92
26
29
a7
26
08
91
04
85
A9
2A
08
09
7F
09
c8
92
04
FC
ES
65
E3
co
E3
93
2F
A9
2F
20
co
20
92
55
92
6D
85
93
7F
F9
F8
91
FB
06
FC
00
91
51
0@
ca
c9
60
26
B1
D@
c4
c9
60
E6

92
gE
40
°0
20
91
E6
DE
A9
DE
18
OE
01
E6
60
18
09
26
08
E2
26
01
26

06
AC
93
85
02

09
44
c4
c9
06
BS
FC
60
18
A9
E6
6D
20
00
20
92
A9
E6
6D
60

20
93
85
00
a1
E8

FA
D6
FF
61
FD
A2
88
co
Ccé
c5
FA
A4

co
Cé

CE
25

20
92
Fo
23
B5
20
C9
6F
oE
6F
99
Cé
90
FF
A5
A4
85
co
Fo
91

90
ca

Cc9
60
18
a9
90

Bl
92
FE
21
Cc9
60
38
18
A5
20
A5
92
5E
8D

20
020
20
92
A9

6D
60
26
Al
90
EQ

DO
Fo

93
85
00
18
FF
06
FC
A5
FE

FF
96

85
B1

7A
20
ES

91
B5
40
8F
9D
8F
ED
FF
04
E6
FD
FE
07
80
97
B1
02
26
FF

FF
A5
A4
B1
02

26
Bl
Fo
ac
FF
38
AS
A5
FD
8D
FC
20
92
55

5E
8D
5E
20
[219]

92
A9
20
FA
11
07

02
D4
24
60
026
Al
E6
F@
A5
B@
FD
A2

%]
A5

26
DE

91
7A
60

20
91
Fo
D@
6F
D@
A5
Cé
Ccé
FE
85
A9
90
90
Bl
26
E6
B1
Fo

Fo
FD
FF
26
E6

29
26
29
18
Fo
AS
FD
FC
65
54
C5
2F
20
Cco

92
54
92
6D
8D

20
00
91
c9
86
90

E6
Ccé

A9
20
FA
FA
024
06
D7
85
00

04
06

A5
85

93A0- 27
93A8- 80
93BO- 40
93B8- CO
93CO- 40
93C8- 40
93D0- 41
93D8- 41
93EQ- 42
93E8- 42
93F@- 43
93F8- 43
9400- 40
9408- 490
9410- 41
9418- 41
9420- 42
9428- 42
9430- 43
9438- 43
9440- 40
9448- 40
9450- 41
9458- 41
9460- 42
9468- 42
9470- 43
9478- 43
9480- 00
9488- 80
9490- 00
9498- 80
94A0- 00
94A8- 80
94B0- 00
94B8- 80
94CQ- 28
94C8- A8
94D@- 28
94D8- A8
94EQ- 28
94E8- A8
94F@- 28
94F8- A8
9500- 50
9508- D@
9510- 50
9518- D@
9520- 50
9528- DO
9530- 50
9538- D@
9540- 20
9548- 20
9550- 21
9558 21
9560- 22
9568- 22
9570- 23
9578- 23
9580- 20
9588- 20
9590- 21
9598- 21
95A0- 22
95A8- 22
95B@- 23
95B8- 23
95CQ- 20
95C8- 20
95D@- 21

95D8- 21

95E@- 22
95E8- 22
95F@- 23
95F8- 23

60
85
85
85
44
44
45
45
46
46
47
47
44
44
45
45
46
46
47
47
44
44
45
45
46
46
47
47
29
80
00
80
20
80
20
80
28
A8
28
A8
28
A8
28
A8
50
D9
50
Dg
50
DY
50
D@
24
24
25
25
26
26
27
27
24
24
25
25
26
26
27
27
24
24
25
25
26
26
27
27

END OF LISTING 2

85

95
93
50
50
51

52
52

53
50
50
51
51
52
52
53
53
50
50
51
51
52

53
53
20
80
29
80
(419
80
00

28
A8

A8
28
A8
28
A8
50
Do
50

50
Do
50

30
30
31
31
32
32
33
33
30
30
31

32
32

33
30

31
31

32
33
33

27

85
85
54
54
55

56
56
8y
57
54
54
56
59
56
56
57
57
54
54
55
55
56

57
57
29
80
090

00
80
00

28
A8
28
A8
28
A8
28
A8
50
Do
50
DO
50
Do
50

34
34
35

36
36
37
37
34
34
35
35
36
36

37
34
34
35
35
36
36
37
37

KEY PERFECT 4.0
RUN ON
BLOCK.ROUT INES

CODE ADDR# - ADDR#
264E 9076 - 90C5
2931 90C6 - 9115
286D 9116 - 9165
2A6E 9166 91B5
28F9 91B6 - 9205
222F 9206 - 9255
238D 9256 - 92A5
2592 92A6 - 92F5
24D1 92F6 - 9345
2EC8 9346 - 9395
2827 9396 - 93ES5
3226 93E6 - 9435
2748 9436 - 9485
2418 9486 - 94D5
2DFF 94D6 - 9525
2DE8 9526 - 9575
2937 9576 - 95C5
1C7C 95C6 - 95FF

PROGRAM CHECK IS : 058A

LISTING 3: BYTE.DEMO

10
20
30
40
50
60
70
80
90
100
116

120
130
140

152
162
178
180
190
200

210
220

230

240
250

260

REM AR EAKB RSO MR REE RSN
REM BYTE . DEMO

REM BY ROBERT DEVINE

REM COPYRIGHT (C) 1985

REM CONCORD., MA. 01742 =
REM
PRINT CHRS$S (4)"BLOAD BYTE.ROUTINES"
PRINT CHRS (4)"BLOAD BLOCK ROUTINES"

CALL 37799: HIMEM: 35584

FOR X = 36608 TO 36616: READ A: POKE X.A

NEXT : REM ENTER SHAPE

DATA 0,28,62.127,127,127.62,28,0

HGR X = PEEK (49234)

POKE 251,143: POKE 250.0: POKE 252.0: POKE
253.8: POKE 254 .20

CALL 36762

FOR Y =1 TO 2

FOR X = 1 TO 190: CALL 36792: NEXT

FOR X = 1 TO 190: CALL 36834: NEXT

NEXT Y

POKE 250.0: POKE 252,10@: POKE 253,108: POKE
254 .@: CALL 36762

FOR Y = 1 TO 2

FOR X = @ TO 39: FOR SHFT =1 TO 7: CALL
36880: NEXT SHFT: CALL 36966: NEXT X

FOR X = @ TO 39: FOR SHFT = 1 TO 7: CALL
36920: NEXT SHFT: CALL 36975: NEXT X

NEXT Y

IF PEEK (-
: END

GOTO 140

REM « BY MICROSPARC, INC -
*

16384) > 128 THEN TEXT HOME

END OF LISTING 3

LISTING 4: BYTE.ML

6000- A9 8F 85 FB A9 00 85 FA
6008- 85 FC A9 08 85 FD A9 14
6010- 85 FE 20 9A 8F A9 02 85
6018- 09 A9 BE 85 08 20 B8 8F
6020- C6 @8 D@ F9 A9 BE 85 08
6028- 20 E2 8F C6 @8 D@ F9 Cé
6030- 09 D@ E6 AS 0@ 85 FA 85
6038- FE A9 64 85 FC A9 6C 85
6040- FD 2@ 9A 8F A9 @2 85 09
6048- A9 27 85 08 A9 @7 85 07
6050- 20 10 90 C6 @7 D@ F9 20
6058- 66 90 C6 08 D@ EE A9 27
6060- 85 08 A9 @7 85 @7 20 38
6068- 90 C6 ©7 DO F9 20 6F 90
6070- C6 08 D@ EE C6 @9 DO D@
6078- 4C 00 60

END OF LISTING 4

