What is the Applesoft collision counter, and how do you
@ Use it with shapes in a program?

The collision counter is a one-byte memory location

@ (SEA = 234 decimal) whose purpose is to detect when

a shape drawn in the current HCOLOR has overdrawn

a pixel of the same color on the Hi-Res screen. After DRAWing

a shape, the counter will be equal to the number of points on the
screen that were intercepted by the drawn s

It is important to realize that this includes the ‘situation where
you arc DRAWing a shape with HCOLOR =0 (black) on a black
background; the collision counter will show the number of colli-
sions equal to the number of points in the shape, even though noth-
ing is visible on the screen.

If instead of DRAWing the shape, you use XDRAW, then the
current HCOLOR has no effect on the collision counter result. In-
slead the collison counter rewrns the count of those pixels con-

m *‘off"* to “'on’’ by the XDRAW action.

Thc collision counter can be used in Hi-Res games, or even to
simulate the SCRN function of Lo-Res graphics, which is other-
wise missing in Hi-Res.

A simple way to experiment with the collision counter is with
the following program. This program uses the now famous *one-
dot-shape” to create a radar screen-like **scanner.” The arm of
the scanner is created by updating the SCALE and ROT values be-
fore DRAWing or XDRAWing the shape.

‘The first program (Listing 1) DRAW:s the scanning line, and then
checks the collision counter afterward to see if any dots on the screen
were intercepted. If so, the program prints the contents of the col-
lision counter and waits for a keypress. The line is crased each time
by DRAWing in black, which has the effect of erasing any dots
the scan line encounters.

For the second program (Listing 2), XDRAW is uscd, and the
collision counter is checked after the linc is erased with a second
XDRAW action. With XDRAW, the collision counter will always
have a high count after drawing a line on a black background. The
test for a collision is done by changing the entire path back to black.
The collision counter will be zero if the entire line is converted
(no dots left **or If any dots are left on after the XDRAW, the
collision counter will be greater ro, and our program will
detect this. Depending on your program, and whether the back-
ground is white or black, different approaches will be required.
Notice how the use of XDRAW leaves the background undisturbed
by the scanning line.

With a SCALE value of 1 and a ROT value of 0, you can
XDRAW a single-dot shape anywhere on the screen twice, and then
look at the collision counter to see if that dot was turned on. This
can be used the way SCRN is in Lo-Res. Listing 3 is a more in-
teresting demo of using the single-dot shape: a program called the
**Hungry Dot,” taken in slightly abbreviated form from a demo
program of the same name on the SoftSwitch disk. Hungry Dot
bounces a single dot around on the Hi-Res screen. Whenever the
dot hits somcmmg, as detected by the collision counter, there's an

**explosion,” and the offending screen dot is eaten. The velocity
of the hungry dot is then recalculated, and the process continues.
Should the dot make it to the outside screen border, an Applesoft
“ILLEGAL QUANTITY ERROR" is trapped, and the dot is reset
to the center of the screen. The program is quite hypnotic — I hope
you enjoy it!

LISTING 1: Collision Counter Demo 1

FOKE 776.4

REM DRAW L

120 VTAB 22: PRINT PEEK (234);
130 1r PEEK (234) > 8 THEN GET AS:

TO 25: NEXT 1: REM DELAY LOOP
DRAW 1 AT 148.80: REM ERASE

IF AS =

NEXT R
170 HCOLOR= 3: GOSUB 190: REN RE-CREATE FIE

180 GOTO 9
190 REM CREATE FIE
200 HPLOT 148.100:
218 RETURN

LD
HPLOT 148,101

0
178 XoRaw 1 AT 140,80: REM XDRAW IST IMAGE
120 FOR I =1 TO 25: NEXT I: REM DELAY LOOP
136 xomaw 1 AT 140 RASE’ IMAGE
140 22: EK (234):" °
150 JF oeek 123‘) SO TN GET AS:
THEN

168 NEXT n

178 GOTO 9

120 Rew oreAT

198 HPLOT 140, m NFLOT 140,101
200 RETURN

1F AS =

