PPLESOFT

BANDAIDS

APPLE UTILITIES

number

of subtle and not-so-subtle bugs in Applesoft have surfaced
over the years. Now you can have a version that corrects most

of these bugs.

recently decided to make some
changes to the routines in my Apple
II's ROM. While I was at it, I
thought, why not fix a bug described by
Comelis Bongers in AN About Applesoft [1].
My aid would be the symbolic disassembler
included with Glen Bredon's Merlin pro-
gram (2], which does a superb job disassem-
bling Applesoft. I had not used it since [
received it with my Big Mac.C Assembler,
but without a doubt — now was the time.
[discovered that there was more wrong
in Applesoft than I had previously imagined.
Applesoft has several bugs that need to be
patched up.
In this article fourteen bugs in Applesoft
are discussed. The machine language pro-
gram (Listing 1) fixes nine of them by copy-

ing Applesoft into the language card and
installing patches. These bugs are:

1.

The multiplication routine doesn't pre-
scrve the proper number of significant
digits under some circumstances.

. References to certain illegal line num-

bers cause a crash instead of an error.

. The numeric string evaluation routine

doesn't reject values with more than one
decimal point.

. All statements on the same line after an

ONERR-GOTO statement are ignored.

. When an ONERR trap is in effect, an

crror with a numeric GET statement
causes improper error and line number
information to be recorded, particularly
when a second numeric GET occurs.

. Under certain circumstances, a

RETURN does not properly terminate
an open FOR-NEXT loop.

. An expression after the TO statement

may be improperly evaluated.

10.

. The integer —32768 is not allowed.
. Anerror with a numeric GET statement

causes an inappropriate message and no
linc number to be reported.
HIMEM is not set properly when DOS
isn’t booted

In addition, two bugs that can’t be reme-

died with patches within the Applesoft ROM
area are discussed, including references to
published methods for correcting them.,
These problems are:

1.

The random number generation routine
does not generate truly random numbers.
At some point, it starts o repeat the same
sequence.

. The garbage collcction routine is ineffi-

cient, causing long delays,

Applesoft Bandaids does not correct the

most familiar Applesoft bug, the stack prob-
lem with ONERR-GOTO. Programmers
have leamed to deal with it routinely and
a correction would cause much existing soft-

ware to malfunction. (It turns out to be a
single missing TXS instruction.)

The following items, while not actually
bugs in Applesoft, have been corrected for
the sake of convenience:

1. MIDS, LEFTS and RIGHTS expressions
that evaluate to zero length strings cause
an error. The enhancement causes a null
string to be returned.

2. CALL without an argument causes an
error. The enhancement causes a jump
to the Monitor.

3. When an error message is printed to the
screen, the line where the error occurred
is also listed.

ing 2 in memory and also enter the code
from Listing 3. Save the Ilc version with
the command:

BSAVE BANDAIDS,A$8000,L$1AA

If you have a [le. keep the code from List-
ing 2 in memory and also enter the code
from Listing 4. Save the ITe version with
the command:

BSAVE BANDAIDS, A$8000,L$19D

For help in entering Nibble listings. see ‘A
Welcome to New Nibble Readers' at the

beginning of this issue.

FIGURE 1: lilustration of Multiplication Bug Code

SESFO ADC #3808
BMI
BEQ
SBC #3508
TAY
LDA SAC
BCS SE911

$E911 cLC
RTS

Norma | With Bug
A=00 C=l A=gG C=P
A=05 C=0 A-38 C=8
Not taken Not taken
Not taken Not taken
A=00 C=1 A=FF C=08
Taken Not taken
C=0 C=0
Return to LDA

next mantissa

byte with

Carry Clear

4. Spaces are significant as delimiters when
entering an Applesoft statement (i.e.,
IF FORK...is parsed as it is typed,
rather than IF FOR K).

HOW TO USE THE PROGRAM

Just BRUN BANDAIDS to copy Apple-
soft to the language card area of memory,
install the patches, and leave the soft
switches so that the patched copy is in effect.
You will find that the first nine bugs
described above have been fixed and the
enhancements have been added. If you have
access to an EPROM programmer, you can
create a permanent copy of the patched
Applesoft ROM. This process is discussed
in the section Putting It All Into ROM.

ENTERING THE PROGRAM

If you have an assembler that can handle
multiple ORGs, conditional assembly and
65C02 mnemonics, enter the source code
from Listing 1, use the proper code for your
machine in linc 9 and assemble it. If you
don’t have an appropriate assembler. enter
the Monitor with CALL —151 and key in
the hex code from Listing 2. If you have

an Apple II Plus, save the program with the
command:

BSAVE BANDAIDS,AS8000,L$183
If you have a Ilc, keep the ¢code from List-

DESCRIPTION OF APPLESOFT BUGS

In this section, each of the bugs listed at
the beginning of the article is described and
analyzed in more detail,

The Multiplication Routine Bug

We begin by turning on the Apple and
typing:
PRINT 1 » 1.00000C11 : REM HOW

MANY SIGNIFICANT FIGURES DO YOU
THINK WILL BE PRESERVED?

The bug responsible for the inaccuracy is
in the multiplication routine and involves an
error in the least significant eight bits. It only
occurs for a small percentage of the possible
multipliers. But since the multiplication rou-
une is called by all of the transcendental
functions — COS, SIN, ATN, EXP, and so
on — these functions are also flawed.

This bug is particularly insidious, as it
gives you incorrect results without giving
you any clue that something is wrong. Thus,
the unsuspected error spreads far and wide.

To investigate the bug further, enter the

following lincs:

10 FOR 1=1 TO 999999 STEP
88020151 : IF lel <> 1l
THEN PRINT 1e1. "<>7; 1s[:
SPC(3)}: CHRS(7):

2@ NEXT

This program checks the results of a multi-
plication against the results when the mul-
tiplier and multiplicand are exchanged.
Normal Applesoft prints a product every few
minutes. After I patched the bug, the pro-
gram ran overnight (up to 1=228) without
printing anything. Note that the values
printed tend to be slightly more than V'8
where n is an integer.

What's wrong here? Each floating-point
number is stored as a one-byte exponent and
a four-byte mantissa [3,4]. During a calcu-
Jation, there is a fifth '‘guard’’ byte of the
mantissa for each floating-point accumula-
tor. Multiplication of the mantissas is per-
formed by a shift-and-add process, which
you may remember having learned in the
third grade. However, you used decimal
numbers and the computer uses binary
numbers. In binary, the only single-digit
multiplications involve a zero or a one. Mul-
tiplication by one or zero boils down to add-
ing the multiplicand or adding zero (i.e., not
adding). To demonstrate how the shift-and-
add algorithm works, let’s multiply two
three-bit binary numbers:

Binary Decimal
100 4 (multiplicand)
101 5 (multiplicr) _
100 1 X4=4
000 0x4=0
100 I X4 =4
10100 20

The multiplicand is shifted and added. The
multiplier drives the shift/add process. The
problem that Applesoft solves, though, is a
little more complex: five eight-bit words are
in each mantissa and the 6502 adds cight bits
at once. Ultimately, the exponents are con-
sidered, but we need not consider them here,
since that calculation is not involved in the
bug.

Now that we have some idea about the
overall algorithm, Jet’s use the Apple Mon-

FIGURE 2: lllustration of Numeric String Evaluator Bug Code

$EC9E (Adjust exponent)

First Decimal

Point Point

C=1 $9B=%00 C=1 $9B=$80

$EC98 ROR 3$9B C=0 $9B=%80 C=0 $9B=$C@
BIT $9B M=1 V=0 M=1 V=1
BVC Taken Not taken

Second Decimal

itor to list the offending section of code. To
get into the Monitor, type CALL —151 and
then E994L.

What you see is a series of LDA instruc-
tions (which we can translate as *'load a byte
of the mantissa of the multiplier’”) and JSR
SE9BO instructions. SE9BO is a subroutine
that does the multiplication for one byte of
the multiplier. The routine that actually per-
forms the shift/add process, byte by byte,
starts at SE9BS. The code between SESBO
and SE9BS checks to see if the mantissa byte
is zero; if it is, then a shortcut can be taken
{JMP SE8DA) which will shift the multiphi-
cand eight bits in one fell swoop. If you
replace the JMP SE8DA with NOPs (No
Operation, *‘do nothing™* instructions), then
the routine runs a little more slowly but the
test program doesn’t detect any discrepan-
cies when the two numbers are transposed.

Why bother to have a special fast routine
for one special case out of 256? In other
words, there are 255 ways a mantissa byte
can be nonzero, so why provide a shortcut
that is only used for one of the 256 possi-
bilities? Integers and other even numbers
{e.g. n/8, where n is an integer) are com-
mon in most programs. These frequently
used numbers will have several mantissa
bytes cqual to zero.

We now have strong evidence that some-
thing about the SE8DA branch causes the
errors. Glen Bredon states that the problem
is that the Carry bit needs to be set when
we get 10 SESDA and that it will not be set
if the prior mantissa byte was (also) zero.

Before going to look at SES8DA, you
might want (0 assure yourself that the Carry
bit is always set after going through the usual
$E9BS route. Essentially. the bit set by the
ORA #$80 at SE9BG is shifted into the Carry
bit on the eighth time through the LSR at
$EIDF. The RTS at SE9E2 returns to the
next LDA (load a mantissa byte) in sequence
with the Carry bit set.

At SE8DA, the cight-bit shift is performed
without disturbing either the zero value in
the A-Register or the contents of the Carry.
This routine is called from several places in
Applesoft other than just the multiplication
routine, however. It is capable of more than
Just eight-bit shifts; the routine shifts n
places when # is in the Accumulator on
entry.

To understand what happens at SESF0,
see Figure 1. An incorrect multiplication
occurs when a multiplier has two consecu-
tive zero mantissa bytes. The first zero byte
proceeds through SEBDA as shown in the
Normal column. The second one starts with
Carry clear and proceeds as shown in the
With Bug column. The multiplicand under-
goes extra, erroncous shifting. A final, non-
zero multiplier mantissa byte adds the
erroncously shifted multiplicand to the
result, The final nonzero byte is nor present
unless the multiplier is slightly more than
n/8. If it is much more than n/8, then there
won’t be two zero mantissa bytes.

We have already seen one patch to ¢limi-
nate the bug, at the cost of slower multipli-
cation for certain commonly encountered

TABLE 1: Program Functions

226-233; 250-254
periods

263-267
expected NEXT

221-224; 243-248;

301-305

281-285. 307-312

314318

287-292

164-166: 127-128

Amenities

184-201; 269-273
211-213; 275-279
235-241
256-261

Lines Function
Making Free Space
118-181 Shorten cold starnt
215-220 Old RUN on any input
226-233 Use unused constants
Bug Fixes
202. 320-325 Use new S-byte constant for —32768
203-206; 294-299

Fix line number bug (line 440010)
Fix numeric string evaluator to produce error with multiple

Stack properly maintained when RETURN occurs before

Properly evaluate TO argument

Add SEC o muluplication routine

Look for colon or end of line after ONERR-GOTO
Generate meaningful error message for numeric GET
Fix no-boot bug by properly setting HIMEM

Print erroneous line after error message

Causes CALL without argument to assume - 151

Add recognition of significant spaces

Causes zero-length string functions to return null string

multipliers. Another, neater way of accom-
plishing the same thing would be to replace
cach JSR SE9BOQ instruction with JSR
SE9BS. A third, better approach is simply
10 set the Carry flag each time before calling
SE8DA. This is what the patch in Applesoft
Bandaids does. Note, however, that the JSR
$E9BS approach actually saves a few bytes
rather than requiring extra space: there may
be situations where that is the preferred
patch.

The Line Number Bug

Open your disk drive doors before you try
this one! It just might destroy your disk
before it finally crashes. Turn on your Apple
and type:
440010

What you did was to tell Applesoft to delete
a line whose number is outside the allowed
Applesoft range. Instead of generating a
SYNTAX ERROR message, the machine
crashed, so the bug is in many ways worse
than the first bug we discussed. This bug
affects any reference (e.g., GOTO,
GOSUB) to a six-digit line number. (Actu-
ally, certain seven-digit, cight-digit, nine-
digit, etc. line numbers will also cause
Applesoft to crash; it is the first five digits
and the presence of additional digits that are
at the root of the problem.)

Now let's get into the Monitor and type
DAOOL. The first instruction is & JSR that
gets the next character of the BASIC pro-
gram into the A-Register and clears the
Carry if it is numeric or sets the Carry if
it is not numeric. JSR $DAOC executes the
routing to convert text into line numbers. At
$DAOC, a two-byte number at $50.851 is
sct to zero; this is where the line number
is built up as characters arc read from left
to right.

At SDAI2, the Carry bit is tested; if the
character is not a number, an RTS is issued,
and the new character is saved in $0D. The
routine then copies the contents of $51 and
$SE and compares the contents of $51 (the
high byte of the line number being formed)
to the number $19. Since this is the high
byte, multiplying the decimal equivalent {25)
by 256 yiclds 6400. Since another digit (in
$0D) will be appended to the number, this
is actually a test for a line number over
64,000. This is where our six-digit line num-
ber should generate its error message. The
code below this point multiplies the form-
ing line number in $50,851 by ten and then
adds the new digit. Finally, at SDA40, the
program JSRs to get the next cheracter of
the BASIC program and loops back to
SDAI2.

At SDAIF, our special six-digit line num-
ber left the loop. What the authors of Apple-
soft wanted to do here was to generate a
SYNTAX ERROR message. They needed
o get to SD981 where there is a JMP in
order to print the message. But the 6502's
branch instruction won’t reach that far: it

can only go backwards 126 bytes. What they
did was 1o find an intermediate stop at
SDYF4, where another routine decides
whether to generate a SYNTAX ERROR
message (it is looking for a GOTO after an
ON).

At $D9F4, there is a comparison that was
intended to always result in a branch to
$D981. This comparison comparcs the old
$51 value (i.e.. the high-order byte of the
line number) to the constant $SAB, which is
the token for GOTO. Hexadecimal SAB is
171 decimal, and 171x256=43776; the line
numbers that make Applesoft blow up are
437760 through 440319. 1 have a strong sus-
picion that the Applesoft authors knew this
bug was present when they wrote this code.
but that space limitations caused them to
ignore it.

When the value $AB hits SD9F4, no error
message is printed. Applesoft tries to treat
our six-digit line number as though it were
in the middle of an ON-GOTO. It pulls one
byte (806) of the return address (that should
have gotten us back to $DA06) off the stack
at SDIFC and shortly after does an RTS into
limbo.

The Numeric String Evaluator Bug
Let’s demonstrate the next bug by typing:

PRINT 1.2.2: REM TWO DECIMAL
POINTS [N ONE NUMBER MUST BE AN
ERROR

The bug is in the numeric string cvaluator,
although it only shows up in the case of
PRINT statements. Again, the bug is a miss-
ing instruction — but this time it is a three-
byte JMP to the error processing routine.
A flag is tested 1o make sure that a number
has just one decimal point, but no error mes-
sage is actually printed.

The routine to evaluate a floating-point
number begins at SEC4A. Between SEC4A
and SECS2, a block of zero page locations
is set to zero. Note that this includes $9B.
which is used to flag the presence of a
decimal point in the ASCII string being
converted to a number. At SEC66, the next
character is compared to $2E, which is the
code for a period; if it is a period, program
flow branches to SEC98. At $ECI8, the plot
thickens (sec Figure 2). If Applesoft does
not take the branch at the BVC instruction,
there is a second decimal point in the num-
ber. When it is time to print an error mes-
sage, Applesoft instead falls into a routine
that adjusts the exponent of the number
being formed.

I've used the ILLEGAL QUANTITY
error message for the second decimal point
error in Applesoft Bandaids.

ONERR-GOTO Remainder of Line
Ignored

This bug in ONERR-GOTO is demon-
strated with:

18 ONERR GOTO 50

20 END
3@ STOP

PRINT "LINE 18"

FIGURE 3: lllustration of Improper Evaluation of TO Argument Code

Location:

9D 9E 9F AP Al A2 AC

A-Register

SD79C LDA $A2
ORA #S7F
AND SSE
STA SSE

JNP SDE20
$DE2@ JSR SEB72

A3 FF FF FF FF 00 EO
A3 FF FF FF FF 00 EG 00

A3 7F FF FF FF @8 EO 7F

Sets up return for call to SDE2@

A3 7F FF FF FF 20 E®
A3 80 90 92 00 90 092

7F
7F

The PRINT statement is ignored. ONERR
is processed at $F2CB. At $F2E3, a JSR
SDYAG skips over the rest of the line — this
is useful for REM statements in which the
colon (:) is nor significant. For other state-
ments, the routine is usually called by JSR
SD9A3Z, so ecither the end of the line or a
colon terminates the statement. | was unable
to discover any ill effects from changing the
instruction at SF2E3 to JSR SD9A3 in
Applesoft Bandaids.

Successive GETs After ONERR-GOTO

The Applesoft manual documents a bug
that occurs when therc are successive errors
in GET statements. without an intervening
correct statement, The bug is demonstrated
by the following code:

16 ONERR GOTO 60

20 GET N : REM TYPE A LETTER 7O
GET AN ERROR

38 END

60 PRINT “ERROR #'. PEEK(222)."
IN LINE “: PEEX (21B) + PEEK
(219) « 256: RESUME : REM
RETRY GET!

The fix for the GET bug (below) corrects

this one as well; it will make a correspond-
ing change in the error number reported.

The RETURN WITHOUT GOSUB Bug
The next bug is thoroughly discussed in

at least two previous articles [1,5]. It can

be demonstrated with the following short

program:

5 LOMEM: 7677:GOSUB 1&.END

1 FOR 1 =1 TO 1: RETURN

When you run this program, a RETURN
WITHOUT GOSUB error message appears.
To eliminate the message, change the loca-
tion of the variable I by changing LOMEM
10 7678 (or deleting LOMEM).
The bug occurs when both of the follow-
ing apply:
1. A FOR loop is still active at the occur-
rence of a RETURN statement.
2. The index variable of the FOR loop (*I'
above) is stored at address $xxFF.

Of course, writing well-structured code is
the best prevention against the first condi-
tions.

The RETURN statement, whose code
begins at $D96B, calls a subrovtine at
$D365, which clears the FOR loop infor-
mation from the stack. This terminates any
FOR loops that are still active, The clear-
ing subroutine is also called by a NEXT
statement. It supports the NEXT A syntax
by comparing the address of the index vari-
able(s) that the FOR statement put onto the
stack against the address of the variable
specified in the NEXT A statement (saved
in $85,886). If the variable addresses don't
match, the information from that FOR is
cleared off the stack and the index variable
of the previous FOR is checked to see if it
matches the NEXT A variable. If the stack
is found to contain a non-FOR entry before
amatch is found, then a NEXT WITHOUT
FOR crror message is generated by the
NEXT routine (not by the subroutine!).

The intention of the Applesoft authors was
that any unterminated FOR loops be-cleared
from the stack before returning from the
subroutine when a RETURN is encountered.
To do this, it would be necessary to prevent
a match between the FOR loop variables and
the address where the NEXT syntax puts its
variable ($85,$86). So the authors stored
SFF in $85 at SD96F.

Unfortunately, $FF in $85 does not
always prevent finding a match, i.e.. if the
index variable is located at $xxFF. In this
instance, the routine at $D365 returns with-
out clearing the FOR loop information from
the stack. The return from subroutine por-
tion of the RETURN statement finds this
information on the stack instead of the ex-
pected GOSUB token (which GOSUB stores
on the stack). At SD975, the stack token is
compared to the GOSUB token and at
SD979, the branch to print the error mes=
sage is taken.

The fix developed by Cornelis Bongers 1§
clegant: SFF is stored in $86 rather than in
$85 hefore SD365 is called, so a match can-
not occur. The index variable address would
have to be SFFxx, and this is not possible
within Applesoft’s variable space.

The TO Value Bug
Once again, let's begin by demonstrating
the bug with this line:

FOR I = @ TO 2Aa35 - 1 : PRINT I
: NEXT : REM THIS LOOP WILL NOT
REALLY TAKE ALL NIGHT. BUT (T
SHOULD!

In this case, the TO value is misinterpreted
during its processing.

An understanding of the floating-point
number format is important to the following
discussion. An ideal starting point is Eric
Goez’s “‘Real Variable Study’ [6]. The
EITOT OCCurs as the number is compressed
to the four-byte format in which it is saved
on the stack. The text expression corre-
sponding to the TO valuc is cvaluated at
$D799 by JSR $DDé67. On return., the sign
is in $A2 and the fifth byte of the evaluated
expression’s mantissa is in $AC. The rest
of the floating-point value is in $9D.Al.

After evaluating 2A35 — 1, processing
proceeds as shown in Figure 3. The floating-
point value at the end of this process is nega-
tive. The purpose of the JSR SEB72 is to
increment the mantissa by one if the fifth
{guard) byte is over $80, i.e., to round up
by one bit in the fourth mantissa byte. The
instructions between $SD79C and $D7A3 set
the high mantissa bit based on the contents
of SA2. Each part works well by itself, but
the parts are executed in the wrong order,
so the sign bit may be changed by the round-
ing operation. If we arrange things so that
JSR SEB72 precedes packing the sign bit,
then the calculation is done correctly,

The —32768 Bug

Bredon has concluded that the following
feature is a bug. However, because it works
in the same way as it is documented to work,
it is properly called a *‘feature,"’

Integer variables are stored in two bytes.
Those 16 bits can represent 65536 differ-
ent values. Two's complement numbers can
have the values 0 through 32767 and —1
through —32768. However, Applesoft’s
integer variables are only allowed to assume
65535 different values and —32768 is not
allowed.

To demonstrate this feature/bug. enter:

A% = —32768

and you'll get an ILLEGAL QUANTITY
error.

There arc a variety of ways that this fea-
ture could become a significant problem.
Most obvious to me is that it is impossible
to represent an address in RAM with an inte-
ger variable. Thercfore, this feature may
need fixing, like the bugs we've discussed
so far.

Let’s see how the ROM code works.
First, the expression is cvaluated as a
floating-point number. Then at SE10C, the
floating-point number is tested to see if it
is within the allowed integer range. The
exponent is tested; if it is less than $90, then
the absolute value is 32767 or less. If it
passcs this test, then it is converted to an
integer with a jump to SEBF2.

If it is not less than 32767, then it is tested

to see if it's equal to —32768. The constant
—32768 is stored at SEOFE (90 80 00 ().
The address of the constant is loaded into
the A and Y Registers at SE112. However,
the subroutine called to perform the come
parison compares five rather than four bytes.
The $20 from the subsequent JSR instruc-
tion is used as its low-order byte. Asa result,
this sccond test fails for —32768. The test
does succeed for —32768.00049.

The GET Bug
Even Bredon missed the next bug. Type:

18 GET K

When you RUN this, try typing a letter
rather than a number. You geta SYNTAX
ERROR message rather than something to
do with your bad run-time input, and un-
like most error messages. no line number
is shown. You don’t know where the error
occurred and have few clues as to what went
wrong. Fortunately, GET is rarely used with
a numeric type variable.

The GET statement is handled starting at
$DBAO. It turns out that GET, READ and
INPUT are handled by a single main rou-
tine. At various points, that routine needs
10 know which of the three types of state-
ments it is working on. A flag in Jocation
$15 is set to $40 for GET, to $80 for READ,
and to $00 for INPUT. Input errors for all
three types of statements are handled at
SDB71; use the Monitor L command to list
the code at SDB71.

The flag is tested to determine the state-
ment type. If it is an INPUT statement, the
program branches to $DB87; if it is a
READ, the branch is to SDB7B. At $SDB7B,
the ling number of the current DATA state-
ment is copied into the current program line
number. The error was in the input so a
SYNTAX ERROR is indicated. If, at
SDB71, the ROM routine is processing a
GET, it loads $FF into Y and goes t
SDBTF (in the middle of READ error pro-
cessing). The SFF is stored in the high byte
of the current line number at $76. This is
a flag used by the BASIC interpreter to indi-
cate direct mode. The program then jumps
to $DECY to print the SYNTAX ERROR
message.

Applesoft's authors intentionally de-
stroyed the line number information, per-
haps because of confusion about the
ILLEGAL DIRECT ERROR (which is actu-
ally handled clscwhere). If we replace the
lines at $DB77 with a JMP $DD?76, the
result is a TYPE MISMATCH crror mes-
sage and a correct line number. This scems
more satisfactory,

The No Boot Bug

The next bug only occurs if DOS or
ProDOS is not booted — so turn your Apple
off, remove the disk, turn it on again and
press Reset to get into Applesoft. Type in
the following program:

5 GET AS : PRINT VAL (AS$)

When you run the program, Lype a number.
You can eliminate the bug by adding the
following line:

2 HIMEM: 49151 : REM No Boot

The bug has been beautifully described by
Bob Sander-Cederlof [7]. However, it scems
to me that the blame Jies not with the VAL
function, as he asserts, but with the way a
cold start sets HIMEM. The bug would cer-
tainly look different (and might not cxist at
all) on old Apple II's with 16K or 32K of
RAM. This may well be how it escaped the
notice of the Applesoft authors.

In a 48K or 64K Apple, a cold start sets
HIMEM to 49152 ($C000 hex). In the ex-
ample above, the first string created after
startup is AS, and its value, the ASCII code
of the number you typed. is stored at
$BFFF. The next memory location (SCO00)
is not 2 RAM address; it is the keyboard
input address — an 1/O address.

The VAL function begins at SE707 with
a JSR SE6DC. This sets SSE.$5F to point
to the beginning of the string named in the
call to VAL, and the length of the string is
returned in A. A is preserved until SE71B,
where it is added to the contents of S5E, $5F.
The result is stored at $60.561 to point to
the byte after the string. The byte after the
string is copied onto the stack and a zero is
stored after the string. This zero flags the
end of the string. Then the routine to evalu-
atc a floating-point number is called
(SEC4A, which we met in connection with
the Numeric String Evaluator Bug). The
expression is terminated by the zero and
when the subroutine returns, the zero is
replaced with the item saved on the stack.

However, since SC000 is not a RAM
location, zero ¢an't be stored there. SCO00
continues to be read as containing the value
of the last character typed. The expression
evalvator reads characters until it finds a
non-numeric character — usually, but not
always, at $C010. [8].

The solution is to have the coldstart rou-
tine set HIMEM to 49151 ($BFFF) instcad
of $C000, or to always use DOS so that
there is RAM after that first string. Using
any DOS that is language-card resident will
solve the problem, as well as having DOS
in its regular location. The fix for this bug
included in Applesoft Bandaids will only
take effect if the code is placed in EPROM.

The Random Number Generator Bug

As detailed in two articles in the January
1983 issue of Calf-A.P.P.L.E. [9.10], the
random number generator is “‘fatally
flawed.” The authors of the first article
present an interesting little program that
demonstrates non-randomness while filling
the Hi-Res screen with points chosen using
the RND(1) function. A slight variation of
that program is as follows:

5 HGR2: HCOLOR=3
10 HPLOT RND(1)+28&, RND(1)-192
GOTO 18

This program uses the random number gen-
erator to choose points to plot on the Hi-Res
graphics screen. If the random number gen-
erator works well. the program eventually
fills the screen with white dots. However,
it the sequence of random numbers begins
to repeat, then the screen does not fill and
the same points are plotted over again. It is
much easier (o see the repetition develop this
way than by searching long lists of random
numbers, although this sort of program may
easily underestimate the seriousness of the
flaw in the random number generator.

The clegant substitute routine presented
in the second article [10] is much longer than
the built-in random number generator.
Because the program is accessed through the
USR function rather than RND, the fix
doesn’t preserve compatibility with existing
programs.

The Garbage Collection Bug
Demonstrating this bug will take a pro-

gram somewhat bigger than for previous

bugs:

10 LOMEM: 19032 : HIMEM:10870

20 FOR | = ASC("A") TO ASC("Z")
STEP 4- AS= A$ + CHRS(I) +

CHRS(1+1) + CHRS(I+2) + CHR$

(I+3): NEXT
3@ PRINT AS

Linc 10 restricts the vanable space, forcing
Applesoft garbage collection. By eliminating
line 10, you can see the correct program out-
put. The bug occurs when a temporary string
forces garbage collection to occur; line 20
forms temporary strings several times in the
process of assigning a new value to the string
variable AS.

Applesoft garbage collection is so slow,
many programmers work around it when-
ever possible. Knowing that there’s a bug
in the built-in garbage collector just gives
you one more reason to avoid it. For an
excellent review of a technique for avoiling
garbage collection, see [11]. On the other
hand, there are a couple of published gar-
bage collection routines you may want to
look into. Comnelis Bongers' straightforward
garbage collection routine [12] is a better
choice than Randy Wiggington's fast gar-
bage collection routine [13], but it is about
$40 bytes longer than the built-in garbage
collection routine.

ProDOS already includes a fast garbage
collector. Those of you who are able 10
devote 20K to your operating system {in-
stead of 10K for DOS 3.3) don’t need to
worry about slow garbage collection or the
bug in it — unless you invoke the firmware
garbage collector by accident. The latest
version of Diversi-DOS also offers a fast
garbage collector, without the large memory
penalty of ProDOS [14].

GAINING SPACE

Before we patch the problems documented
above, we need to find space within Apple-
soft to make the patches. Most long patches

LISTING 1: BANDAIDS Source Code
. BANDA10S

« by John R. Raines
« Copyright (C) 1987
« by MicroSPARC, Inc
« Concord, MA @1742

D T Y

WRNOGEWN -

« Merlin
MACHINE
GOWARM
GOSTROUT
USR

AlL

AlH

A2L

A2H

AdL

AdH
LINNUM
LASTPT
TXTAB
FRETOP
MENSIZ
CURLIN
FORPNT
DSCLEN
JMPADRS
DECPNT
FPGEN
FACSGN
TXTPTR
TRCFLG
SPEEDZ
OP_APPL
IN
REASON
RESTART
PARSE
FNDLIN
SCRTCH
NXLST
CRDO
STROUT
OUTSP
FRUNUM
TYPERR
SYNERR
PUSHFAC
IQERR
RNDB
EVAL
INPRT
ZPSTUFF
NORMAL
WAIT
MOVE
MON

START

C1

10000
0803
$SO0A
$3C
AlL+1
$3E
A2L:1
$42
AdL-+1
s34
$53
$67
$6F
$73
$75
$85
$8F
$90
398
$A4
$A2
s68
$F2
SF1
$CO61
$0200
$D3E3
$D43C
SD56C
SD61A
D648
SDEDA
SDAFB
SDB3A
30857
$0067
30076
$SDEC9
SDE2Q
SE199
SEB72
SEC61
SED19
SF10B
$F273
SFCAS
$FE2C
SFF65

llllll.llulllllillll|IIIIII||Illllllllll|llllIIIIIIIIIIIIIIIIIINIllIIIIlIII.lIII

ORG $B200
BIT $CO81
$CO81
LDA LR
STA AlH
LDA &0
STA AlL

LDA (AIL) .Y
STA (AlL) Y

INY

BNE Cc1
INC ALK
BNE C1
LDA #>Q1
STA AlK
LDA A<Ql
STA AlL
LoY wo
LDA (AIL) Y
BEQ DONE
STA AdL

.
.
.
.

Pro Assembler
s$2¢C

:$@9--I1 Plus, $2C--//c, $2E--enh, //e

.vector to USR
.pointer used by Monitor MOVE

.ditto

:ditto

start of prgm text
;start of string storage
(HIMEM

icurrent |ine

:see 7 APPLESOFT ERR

.sign of FAC when it's unpacked

itrace flag
;actual SPEED is 256 minus this
copen apple key on /e, //c

‘Write enable bank-sw. RAM, read ROM

;Start copying at SD0O@

;copy ROM into bank-switched RAM

;all the way to SFFFF?

;END OF PATCH PROCESS?

LISTING 1: BANDAIDS Source Code (continued)

113
114
115
116
1z
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

INY
LDA (ALIL) .Y
STA AdH AAL H is destination address
INY
LOA (AIL),Y
STA A2L
INY
LOA (AIL) .Y
STA A2H ;A2L.H is last byte of source block.
INY
TYA A=4
cLc
ADC AlL Upuate Al to point to start of neExt pateh,
STA AlLL
BCC NOCARRY
INC AlH

NOCARRY LOY LL]
JSR MOVE JMOVE PATCH INTO PLACE
BCS C2 JALWAYS BRANCH

DONE BIT sco82 JWRITE LOCK L.C
BIT sCoso JENABLE L.C. READ
RTS end of program to install| patches

R

*DATA STRUCTURE IS.

. 2 BYTES "WHERE IT'S GOING"
. 2 BYTES "LAST BYTE OF THIS PATCH™
. CODE OF THE PATCH
* AND REPEAT. FINALLY ENDS WITH A ZERO BYTE AFTER LAST PATCH
.
Q! DA P1
DA Q2.1
ORG SF128
« ABBREVIATED COLDSTART ROUTINE FROM APPLESOFT
« THE CRIGINAL CONTAINS SOME OF THE FEW EXAMPLES
« OF INEFFICIENT COOE IN APPLESOFT. A BUNCH
+ WAS ALSO SAVED BY ASSUMING THAT THERE IS 48K
+« OF LOWER RAM (APPLESOFT WAS WRITTEN LONG BEFORE
+ THAT WAS A SAFE ASSUMPTION)
P LOX ASFF 1T18g direct moce by SFF in high byte
STX CURLIN+1 of current line pointer
STX MEMSIZ
STX FRETOP
LDX NSFB
TXS init stack
JSR NORMAL
LDA ws$4aC ;JuP - sacC

STA GOWARM
STA GOSTROUT
STA JMPADRS
STA USSR

LDA N<IQERR

LDY #>IQERR (USR() ==> ILLEGAL QUANTITY error

STA USR«1 ;unless user inits

STY USR+2

LDX 28 ;length of page zero stufft
ZPCOPY LOA ZPSTUFF-1 X

STA $BO . X

DEX

BNE ZPCoPY

« X=0 after loop
STX TRCFLG

STX FPGEN

STX LASTPT+]

TXA iA=0
STA $800

PHA

LDA #3

STA DSCLEN

JSR CROO

LDA nAs@!

STA SPEEDZ

STA IN-3

STA IN-4

STA TXTAB

LDA #355

STA $52

LDA MsSBF itop of contiguous memory

STA MEMSIZ+1
STA FRETOP+]

LoY #3@8
STY TXTAB+1
LDA TXTAB
JSR REASON

JSR SCRTCH
LDA #<STROUT
LDY #>STROUT
STA GOSTROUT+1
STY GOSTROUT+2
LDA #<RESTART
LDY #>RESTART
STA GOWARM+1
STY GOWARM+2
JNP (GOWARM-+1)
« End of my cold start--free to FID4

206

213

215
216
217
218
219
220
221
222
223
224

226
227
228
229
230
231
232
233

235

267
269

271
272

« PRINT LINE ERROR WAS FOUND IN ALONG WITH ERR MESSAGE

- FOR //C QUITE DIFFERENT FROM BASIS ROUTINE
PLNERR JSR INPRT iprint "IN nnnn”
LDA CURLINel
LDX CURLIN
STA LINNUMe«1
STX LINNUM
JSR FNDLIN
LDX ¥SFF
STX CURLIN+1 (DIRECT MODE NOW
TINX | X=@
STX TXTPTR
LoY 2
STY TXTPTR+1 ;TXTPTR POINTS TO $200
TXA :A=0
STA (TXTPTR),Y ;$202=0 construct end of
STA (TXTPTR.X) :$200=0 program flag.
Jne NXLST ;list the line & drop into direct mode
M32768 HEX 90800000€0 :five byte -32768.
CHLINN CwP #519 :lina # already >64007
BCS SYNRRR
RTS
SYNRRR JNP SYNERR :go directly to SYNTAX ERROR
HEX 8D ;GET CHECKSUM CLOSE
HEX 8D :GET CHECKSUM CLOSE
HEX 8D JGET CHECKSUM CLOSE
HEX 8D {GET CHECKSUM CLOSE
HEX 80 JGET CHECKSUM CLOSE
HEX 8D {GET CHECKSUM CLOSE
HEX 8D JGET CHECKSUM CLOSE
HEX 8D {GET CHECKSUM CLOSE
HEX 99 {GET CHECKSUM FOR APPLESOFT RIGHT!
ERR SFiIDP-~ ifollowing code must sit just sbove cld CALL
GOMON JMP MON
CALL BEQ GONON :CALL w/0 argument goes to Monitor
T I IIIImIIIIIIooms
ORG «+PleQled ORG to where this LOADS rather than where
- dit'll go
Q2 DA P2
DA Q3-1
ORG $D560 cold "RUN no matter what” routine
P2 BNE PARSE
TOFIX JSR RNDB sround TO value before combining with sign
LDA FACSGN
ORA H$7F
RTS
L e RS
ORG +-P2+Q2+4
Q3 DA P3
DA Qa-1
ORG SFQ94
P3 BIT DECPNT
BVS J1 IMULTIPLE "." IN NUMBER
JMP EVAL
J1 JNP IQERR ; ILLEGAL QUANTITY error
SesTsEsISEIIIN TR IS TSI A TSI ER s st nesnann
ORG <-P3+Q3+4
Q4 DA P4
DA 05-1
ORG SD%AB 1in Parsing routine
« Bxx «42 is a NOP; used to keep checksum the same as original
P4 BCC .+2 ;spaces In statements are significant
BCC .e2 ;for parsing
oo
ORG =-P4+Q4+4
Qs DA P5
DA Q6-1
ORG sSD79C :in FOR statement
P5 JSR TOFIX ;fix TO statement
NOP
o
ORG »-P5+Q5+4
Q6 DA P6
DA Q7-1
ORG SEC9A
P6 JWP P33 Multiple “." in number
Ty
ORG »=P6+Q6+4
Q7 DA P7
DA Q8-1
ORG SESD3 JMIDS LEFTS RIGHTS
P7 BCC 2 ;with zero length now
. iRives null string NOT error
atsesetsesreavseracTssesevsrEs Rt esaassenussEbbe
ORG «-P74Q7+4
Q8 DA P8
DA Q9-1
ORG $SD970
P8 HEX 86 ;See Bongers' Applesoft Error article
N T o
ORG +-P8+Q8+4
Q9 DA P9 ;list error line (not a bug)
DA Q10-1
ORG $D439

I've seen suggest that you climinate the vari- 1 LISTING 1: BANDAIDS Source Code [continued;
ous cassette-tape routines to get the needed | 553 po

23 < JSR PLNERR :print "in line" and list that line
space. This is not an option on the Apple cesevettnseatinerevettruesesnateatrenetreraTtrree
; ; 275 ORG «-P9+Q9+4
lle 9' Basis 108 computers, since the tape 276 Q10 DA P10 (CALL w/0 address to Monitor (not a bug)
routines are already gone — the space has 277 DA Qll-1
Or=Ce i 5 278 ORG SD91B .in keyword vector table
been used for lower-case, medinm sesoli- | 250, g DFB CALL-1 :NEW VECTOR FOR "CALL"
tion graphics and a little 80-column support.
Another option is reassembling all of 28; g:G ;ifl’lﬂww“
Applesoft. savir!g a few bytes here and there g:, oIt oA Qiz-1
(perhaps by using 65C02 opcodes on the | 284 ORG SE9B2 Sin MULT
Apple Ilc). However, this is unsafe, as | 295 PIL WP PMAT WRERE The WISSING EC CoEs
Applesoft has been **frozen™ for so long that | 287 ORG »-P114+Q1l+4
many programs (such as some of the demon- | g:: Q12 g: z:g :
stration programs included with Merlin} 290 ORG SDB77 fix GET error message
assume that ROM Applesoft routines areat | 291 P12 e TYPERR (g0to TYPE MISMATCH error
specific locations. We certainly should not | 2%% ST o iierirrrreenneeaane
move anything that looks like a useful entry | 294 O0RG =-P12+Q12+4
point for a subroutine. 0y e T o

A lot of code that we can moxify to save | 297 ORG SDAIC
space is concentrated in the coldstart rou- | 238 P13 e ichk line no. vs. 6460
tinc at $F128. This is not a useful subrou-
tine, as it does not return to the calling 381 ORG =-P13+Q13+4

£ : : 302 Q14 DA P14
program. The coldstart routine contains | 53 oA Q15-1
some examples of poorly written code, e.g. | 3e4 ORG $D7AC ipart of TO fix
initializing $0001 twice. In wiliion, T | 208 008 e evsicanatessesans
contains a routine (at SF177-3F193) to deter- 387 ORG --P14+Q14+4
mine RAM size dynamically (when Apple- = 368 Qs pe :""’5:71
soft was written, the majority of Apples had | 3;¢ ORG SEOFE .reuse old -32768
less than 48K). It also initializes the old tape | :: ; PHULT i’i‘g — IMULTIPLY--MISSING SEC
cassette software lock, which has become
superfluous. In all, I saved 60 bytes by | 314 ORG --PMULT+Q15+4
eliminating code from this routine. ::: A x m??

At SF094, there are two unused floating- 317 ORG $F2E3 ;statements after ONERR-GOTO bug--
point constants, for a total of ten bytes of | 318 OGO SR wsA3 ilsnore to : o end of |ine
free space. . 320 ORG »-ONRGO+Q15A+4

We need just a litdle more space for our | 321 Q16 DA 'i: .

Pmches. When Applesoft was written (paCk :gg g:c 251;2 in Integer convarsion code
in the days of tapc cassettes), a litle- | 324 P16 LDA ¥M32768 inew (5 byte) -32768 sddress
discussed feature was built into it toenable | 328 AT PAIIRD
software writers to set a flag on page zero | 327 ORG +-P16+Q16+4
and prevent users from LISTing or other- ;ig ;E:';Tzc e ::gg:"':‘”e_ho“ T
wise modifying programs. Other forms of | 332 colp2c = $ECOE ’
protection have superseded this one; thus it 235 NERETK = SFABD
can be safely eliminated. By patching SDS60 | 335 sotme o sooe:
1o BNE $D36C. we gain 11 bytes between | 338 Ris2p0 = $FB2E

. 339 BEEPFIX = SFAA3
$D562 and $D568B. 340 OLORESET = SFF59

341 VNODE = $4FB
: 342 ZRAMSNCH = $C073

MY WISH LIST - . 333 Q7 DA RESET_X

In addition to fixing the bugs I've = 344 DA Q18-1
described, the program installs a few ameni- g:: f:ﬁ :E?gT x
tics that I wanted for my Apple lle (I'd 347 JSR RESET_ZRAM
grown accustomed to them on my Basis | 348 QSL sum;

st IR 2 349 IT BUTN
;O]fll) : My “wish list’” includes the 358 BPL RTS2D
ollowing: 351 BCC BEEPFIX
g . 352 JMP OLDRESET .OLD STYLE RESET TO MONITOR IF BOTH APPLES

1. A CALL without any argument is inter- | ceseressstreseatseraTratTeaT eI TSI EITSISIEEISTIITYY

preted as a CALL —151. 1% I8 i S
2. After printing an error message and “*IN 356 DA Q19-1

a i i 357 Xc .65C02 opcodes availsble on //¢

nann,'" the line that caused the error is S onG BLASTIO

listed. 359 DEC $3F4 ‘kill power up flag
3. String functions (RIGHTS, LEFTS, 360 BRA SFCDE {BRANCH AROUND HOLE BLASTER.

s iiae 361 RESET_ZRAM STA VMODE
MIDS) that evaluate to strings with 362 STZ ZRAMSWCH

length zero output the null string instead 363 RTS

of an error message. TN L OO <L st S S
4. In parsing typed lines, spaces are con- 366 ORG +-BLAST2C+Q18+4

sidered significant as delimiters. For g:; Q19 HEX @9

instance, 'FOR I = S TO P END OF LISTING 1

1s no longer parsed as “FOR 1 =
STOP"". Spaces are not required, but if

LISTING 2: BANDAIDS |l Plus Version

8000- 2C 81 CO 2C B1 CO A9 DO
8008- 85 3D A9 00 85 3C A8 Bl
8010- 3C 91 3C C8 DO F9 E6 3D
8018- DO F5 A9 80 85 3D A9 52
8020- 85 3C AG 00 B1 3C FB 23
8028- 85 42 C8 Bl 3C 85 43 C8
8030- Bl 3C 85 3E C8 Bl 3C 85
8038- 3F C8 98 18 65 3C 85 3C
8040- 90 02 E6 3D AG 00 20 2C
8G48- FE B2 D7 2C 82 C@ 2C 80
8050- CO 60 28 F1 02 81 A2 FF

8058- 86 76 86 73 86 6F A2 FB
8060- 9A 20 73 F2 A9 4C 85 00
8068- 85 @3 85 90 85 GA A9 99
8070- A0 E1 85 OB 84 0C A2 1C
8078- BD @A F1 95 BO CA DO F8
8080- 86 F2 86 A4 86 54 8A 8D
8088- 00 @8 48 A9 03 85 8F 20
8090- FB DA A9 01 85 F1 8D FD
8098- 61 8D FC 01 85 67 A9
80A0- 85 52 A9 BF 85 74 85
| 80A8- AD 08 84 68 A5 67 20
80BG- D3 20 4B D6 A9 3A A
80B8. 85 04 84 05 A9 3C AD
80C0- 85 Q1 84 02 6C 01 00
80C8- 19 ED A5 76 A6 75 85
80D0- 86 50 1A D6 A2 FF
80D8- 76 E8 86 B8 AQ 02 84
80EQ- 8A 91 81 B8 4C DA
S80ES- 90 80 00 00 00 C9 19

70
E3
DB
D4
20
51
86
B9
D6
BO

you include them the BASIC interpreter
will recognize them as valid separators.

Several of the amenities took no extra space,
but just involved substituting NOPs for
existing code.

HOW APPLESOFT BANDAIDS
WORKS

Now it's time to look at the patch pro-
gram, BANDAIDS (Listing 1). It fixes most
of the bugs described above (the exceptions
are the slow garbage collection, the RND
bug and the stack problem with ONERR-
GOTO). The program first copies ROM into
bank-switched RAM (often called the lan-
guage card or RAM card). Then it installs
a serics of patches in high RAM; the indi-
vidual patches are located beyond line 115
and cach patch is part of the data structure
described in lines 109-114. The ORG
pseudo-op is used in a somewhat unusual
way in order to assemble the patches as
though they were in their final resting place,
rather than where they are initially loaded.
Finally, the program enables reading from
high RAM and starts the new BASIC.

I recommend using the program just as
listed. It deals with several issucs that arc
not dealt with in detail in this article. These
issues include the following:

1. Some of the patches are interdependent
(e.g., the old four-byte —32768 constant
becomes unused when the —32768 bug
is fixed; those four bytes are recycled to
fix the multiplication routinc bug).

80F0-
80F8-
8100-
8108-
8110-
8118-
8120-
8128-
8130-
2138-
8140-
8148-
8150-
8158-
8160-
8168-
8170-
8178-
8180-

01
8D
FF
0A
60
03
DS
D7
EC
3B
86
18
81
4C
20
ac
ac
A3
A0

60
8D
FO
20
94
4C
26
2E
35
81
39
Do
4C
76
BF
23
DA
D9
F1

4c
8D
FB
72
Fo
61
81
81
81
90
D4
4C
FE
oD
F1
DE
E8
12
(1]

c9
8D
60
EB
1E
EC
90
20

DE
8D
D5
A%
81
4C
00
62
94

8D
99
10
A2
24
99
90
D5
Fo

8D
ac

09
98
E1
00
EA
D3
a0
99
E9
5B
63
6A
81
81
A9

8D
65

7F
70

9A
E6
81
Fl
53
81
81
81
38
20
BA

00
47
81
EO
09
EA
FE
E3
El

81
D2
77
1C
AC
EQ
F2
81

20
B2
DB
DA
D7
72
79
81

END OF LISTING 2

LISTING 3: Additional Code for lic Version

8182- BD FA 97 81 A9 FF

8188- 20 CF FC OE 62 CO 2C 61
8190- CO 10 64 90 D7 4C 59 FF
8198- CA FC A8 81 CE F4 93 80
81A0- OF 8D FB 04 9C 73 CO 60

81A8- 2F 00
END OF LISTING 3

KEY PERFECT 5.0
RUN ON
BANDAIDS (II PLUS Version)

CODE-5.0 ADDR# - ADDR¥ CODE-4.0
62244008 8000 - 804F 2307
3187715E 8050 - B8O9F 298A
9E190450 80A0 - BOEF 2685
160DBEEF 80F9 - 813F 267E
FF3A097E 8140 - 8182 2114

M TOTAL = o183

172516C3 = PROGRA|

LISTING 4: Additional Code for lle Version

8182- C8 C2 9B 81 CE F4
8188- 03 A@ OF A9 C5 20 A8 FC
8190- 2C 61 CO 10 OB 88 DO F3
8198- 4C 59 FF 24 00

END OF LISTING 4

2. The checksum for Applesoft should be
correct, especially if you are putting the
patches into ROM. This will allow your
ROM to pass the diagnostic routines and
may be needed to use some copy-
protected programs.

3. Several patches are in several pieces. I
have included a table that serves as an
index to the patches for those wishing to
modify the program. I strongly urge any-
one altering the program to obtain a com-
mented disassembly of Applesoft [2].

When it is installed in bank-switched
RAM, Applesoft Bandaids works on any

Severa] of the amenities
took no extra space, but
Just involved substituting
NOPs for existing code.

64K or 128K Apple. With the enhanced
ROMs for the Ile, the checksum may not
be correct when the program is put into
EPROM. The program needs modification
to work on the Basis 108, but with a little
work, the fixes will all fit into existing holes
in the Basis FP80 program. These holes are
a Jong series of zeros at $F7A7 and shorter
series at SF3C9 and SF1DS.

Because [was trying to write patches that
would work on the IIc and Basis 108 — both
of which have already eliminated tape com-
mands and reused most of the space — I1did
not construct the patches to fit into the space
occupied by Applesoft’s cassette tape rou-
tines. For some readers, however, this may
be the preferred way of implementing either
fast garbage collection or a random number
generator.

PUTTING IT ALL INTO ROM

The main reason these changes were put
into ROM is that T know I won't actually
use any pre-boot consistently. If I don’t fix
thc ROM, then I won't always use the
patches; this is particularly distressing when
the multiplication routine bug invisibly
undermines the accuracy of the calculations.

If you use ProDOS, then changing the
firmware seems to be the only way to imple-
ment the patches described in this article
since the bank-switched RAM is occupied
by ProDOS. The older Apple 1l and II Plus
computers used an unusual chip-enable con-
figuration [15], so using 2716 EPROMsS on
the motherboard involves some extra effort
[16]. Apple Ile and Ilc computers accept
standard 2764 and 27128 EPROMs, respec-
tively, so changing the firmware is easier
than on earlier Apples.

I believe that if you own a ROM copy of
Applesoft, then making a firmware copy (for
your own use) that fixes the bugs that Apple
Computer, Inc. neglects is fair use, and the
copyright law allows fair use copying,.

continuad on next poge

The real issue preventing alteration of
ROMs, I think, is that some programs may
do a checksum or other verification making
sure that ROM is just as it should be (per-
haps as part of a copy-protection scheme).
Personally, I have made it a rule not to buy
anything that is copy protected.

MODIFICATIONS

Although Applesoft Bandaids does not fix
the garbage collection bug or the random
number generator bug, references 7, 8, 12
and 13 can help you fix them yourself. One
way to find some space for making patches
is to eliminate one or more of the cassette
tape keywords from Applesoft (in the Apple
II Plus or Ile).

A brief note about how to reuse the space
for the tape routines is in order, since it
should be done in the same way as on the
Apple Ilc. Leave the keyword in place,
intact in the table at SDODO. Replace the
action address for the keyword with the loca-
tion of the ampersand (&) vector, For ex-
ample, to eliminate SHLOAD, the patch is
DO034:F4 03. F4 (not F5) is correct because
the address is pushed onto the stack and con-
trol is actually transferred with an RTS.

The action addresses for the tape com-
mands are stored as follows:

SHLOAD D034 RECALL DO4E
LOAD DO6C SAVE DOGE
STORE D050

If you are interested in implementing
Bongers® garbage collection routine, con-
sider whether it correctly handles garbage
collection that is triggered by a temporary
string — a string that doesn’t have an asso-
ciated variable name. The algorithm as pub-
lished apparently makes no provision for
this. Since Bongers put the garbage collector
outside Applesoft, he did not need to handle
this case; it can only arisc¢ in the middle of
an Applesoft statement. However, it is
essential to do so if a new garbage collec-
tion routine is implemented from within
Applesoft, unless you are somehow able to
guarantee that you always trigger garbage
collection with FRE().

Though the Ilc’s Applesoft ROM has been
upgraded, no one fixed the bugs. I hope this
article helps stimulate interest in getting
these bugs out of future ROMs.

REFERENCES
1. Bongers, Cornclis. **Applesoft Error,"* Al
Abow Applesofi, Apple PugetSound Program
Library Exchange, 1981, p. 100.
2. Bredon, Glen. Merlin, Roger Wagner Pub-
lishing, 1983.

. Applesoft //, Apple product no. A2LO00G,

Apple Computer, Inc., 1978, p. 137. (This
has since been replaced by a new, more
expensive manual.)

. Ibid, pp. 30, 31,
. Floeter, Alan, and Valerie Floeter. *' Apple-

soft FOR-NEXT Problem,"” Nibble, Vol. S¢
No. 12, Dec 1984, p. 109.

. Goez, Eric. "*Real Variable Swdy," Cali-

A.P.P.L.E., Jan. 1981, p. 8.

. Sander-Cederlof, Bob. **A Problem With the

VAL(AS) Function,”” Call-A.P.P.L.E..

Nov.-Dec. 1980. p. 65.

. Sather, Jim. Understanding the Apple 7/,

Quality Software, 1983, p. 5-36.

9. Sparks, David. *'RND Is Fatally Flawed,"

10.

11.

12.

13

14,
15.

16.

Cali-A.P.P.LE. Jan. 1983, p. 29.

Hare, Tom, John Russ and Gary Faulkner.
“*A New Pseudo-Random Number Genera-
tor,”” Cali-A.P.P.L.E., Jan, 1983, p. 33
Ruth, Clay. “‘Garbagemen Strike: Selective
String Preservation,”’ Call-A.P.P.LE., Aug.
1982, p. 9.

Bongers, Cornehis. **Straightforward Gar-
bage Collection.”" Micro, 51:90. August
1982.

Wiggington, Randy. *‘Fast Garbage Collee-
tion,"" Call-A.P.P.L.E., Jan. 1981, p. 40.
Basham, Bill. Divers:-DOS Version 4.1C,
Diversified Software Research, 1985,
Lancaster, Don. Micro Cookbook Volume 1,
Howard W. Sams & Co.. Inc.. 1982, p. 351.
Sather, Jim. Op cit.. p. 6-15.

