AMPER FRE SPLITTER

Amper Fre Splitter

by Gary C. James
1528 W. 130th St.
Brunswick, OH 44212

ave you ever written a high resolution
H graphics program in Applesoft BASIC,

and had to use the Hi-Res graphics
page two because your program was too long
and overlapped page one? Or possibly you
wanted to include a machine language sub-
routine with your program and could not find
a place in memory to locate it. Or worse, the
machine language subroutine was not written
to be relocatable and had to reside in the
same memory locations as your Applesoft
program. If you've found yourself in any of
these unfortunate situations, & FRE is the
answer to your problems.

WHY & FRE

& FRE {pronounced Amper Free) is a utility
program that allows you to free-up any area of
your Apple's memory for whatever reason,
even though that area of memory has become
unavailable for other uses (becauseitis being
used to contain your Applesoft program). The
utility was created to satisfy my need to use
the Apple's mixed text and graphics display
mode — normally usable only with Hi-Res
graphics page one — while running very large
Applesoft programs. | was writing an Apple-
soft-based utility for developing graphics

Shape Tables, when it became clear that the
program would not fit in the limited memory
space below Hi-Res page one. After several
weeks spent writing the program and several
days typing it in and debugging, | discovered
that the program could never run properly
because it was too large. The Apple's memory-
mapped Hi-Res graphics display overlapped
some ot the memory i1t occupied. There | was
with a really useful program. Writing it had
occupied most of my spare time for almost a
month, and all | had to show was a program
that kept inviting the Apple's graphics rou-
tines out to lunch — on it! Well, that was too
much to passively accept. | decided that no
matter what it took, | was going to get the
program running without rewriting it. The
result was & FRE.

LOADING AND RUNNING

& FRE is written in assembly language to
produce an object code program that oper-
ates extremely fast on the Applesoft program
to be "treated.”

To load and run & FRE you must first have
an Apple I, Apple || Plus, Apple lle, or Frank-
lin ACE with at least 48K of memory and
Applesoft. For instructions on how to enter
machine language directly into memory, see
the Letters section of this issue. When you
have typed the program into memory, it can
be saved on disk with the command:

BSAVE FRE.CODE, A$9102, L$477

Because the routine i1s located just below
the DOS file buffers, if the DOS MAXFILES
setting has been changed to a value greater
than the default value of three, this can cause
DOS to overwrite the routine and destroy it.
Make sure that MAXFILES is set o three.

A similar fate could result if somehow after
& FRE is loaded, the BASIC HIMEM pointer
gets altered and allows string variables to
overwrite the routine. If you are unsure of the
values of these parameters, to be safe, before
using & FRE, boot a disk to initialize the DOS
and BASIC pointers to their proper values. If
the aforementioned precautions have been
observed, simply type BRUN FRE.CODE to
load and initialize the routine. You will know
when & FRE is installed when the program
title is displayed and the Applesoft prompt
character returns to view.

You may now load the BASIC program you
want to modify or continue using the Apple as
normal, since & FRE waits patiently and is
inactive until it is activated. For reasons that |
will describe further on, let me caution you
here that the program you intend to modify
should only be a LOADed copy of a program
that you have saved on disk. Never treat a
program with & FRE that does not have an
unmodified disk back-up copy that can be
used if further program changes are ever
needed. And since nobody writes bug-proof
code, changes should always be anticipated.

After you have selected and LOADed the
BASIC program to be modified. the first step
in using & FRE is to prepare the program by
inserting a dummy program line zero. Be-
cause there can only be one line zero in a
BASIC program, if another line zero already
exists, it must be renumbered to allow room
for the new line. To create the dummy line
zero simply enter

0

That's a zero followed by exactly twenty-one
colons. When you have prepared the program
with the new line zero, invoke the & FRE utility
by simply entering:

& FRE Address , Length
where Address and Length are decimal
numbers that define the starting location and
size of the memory area that you want to free-
up. For example:

& FRE 8192,8192

would create a Free Zone out of the eight-
thousand byte area used by Hi-Res graphics
screen number one. This example can be
used for running a very large graphics pro-
gram without fear of overlapping the program
into the graphics memory.

When & FRE has finished modifying your
program, a message is printed to tell you at
what line number the program was split and
moved.

However, if your BASIC program was
already small enough so as not to interfere
with the specified Free Zone, nothing will be
moved and the NOT WITHIN RANGE mes-
sage will be displayed.

| should also mention that & FRE has an
additional feature that | call Failsafe. Failsafe
is placed in effect during initialization and
automatically links & FRE with a previously
loaded Ampersand utility. If you enter any &
command other than “FRE", control will be
passed to the previously enabled ampersand
command handler.

LISTING/RUNNING

Now that your Applesoft program has been
treated by & FRE, if you try to list the program
now, immediately following the split, the pro-
gram shows something other than colons in
the dummy line zero. Also, the program will
list only up to the line that was two program
lines ahead of the line number displayed in
the message. Don't worry though. The pro-
gram is supposed to look like this now. Later
when the program is run, the POKE com-
mands that mysteriously appeared in line
zero will repair the apparently damaged pro-
gram so that it can be listed in its entirety. Be
aware however, that the newly modified pro-
gram musit NOT be saved to disk after it has
been run and repaired.

The program should be saved to disk —
under a ditferent name than the original
unmodified copy — in its unrepaired form
immediately following the & FRE treatment If
you do this, your program will always load
and run perfectly with no indication thatith
undergone a major transformation. This pr
cedure may seem strange, but it is absolutely
essential, since a repaired copy will alm
certainly be destroyed by BASIC followinga
program load.

The type of modification made to your pro-
gram is one reason why | told you earli
never to treat a program with & FRE unle
you have an unmodified back-up copy. ;

The other reason is that once aprogram has
been modified by & FRE, it becomes a RUN
ONLY copy that cannot be edited in any way,
including adding or deleting program lines. It
you try to edit the program, the BASIC line
editor routine gets very confused and will
usually destroy your program in the process
of editing it.

After madification, any subsequent
changes you wish to make should be made ta
another copy of the original program, and
again saved under a name that is different
from the original. Saving an & FRE treated
program is accomplished in the same manner
as for a normal untreated Applesoft program.

THE PROBLEM

Now that you know how to use & FRE, let
me try to explain the technical details that led
to its creation.

Normally there are about six thousand bytes .
between the memory address where Apple-
soft programs are loaded, and the starting
address of Hi-Res graphics page one (see
Figure 1). For aHi-Res graphics program that
will use page one, both the program and the
numeric variables and arrays it creates must
fit into this limited area.

Applesoft programs are usually loaded from.
disk into the Apple’'s memory starting at
address $800. (The dollar sign is used to indi-
cate a number being expressed in hexade-
cimal form; i.e., base 16.) When the program
has been loaded into memory starting at this
address, DOS adjusts the BASIC LOMEM
pointer to point to the address just beyond the
end of the program. Subsequently, running
the program will cause any newly created var-

1ables to be built up in memory between the
starting address pointed to by LOMEM, and
the upper memory limit pointed to by HIMEM;
the only exception being string variables that
start at HIMEM and build downward in
memory.

49131 $BFFF
Disk Operating System
38400 $9600
24576 $6000
High resolution graphics
screen two
16384 $4000
High resolution graphics
screen one
8192 $2000
Applesolt programs start
at address $800 and build
upward in memory.
2048 $0800
BASIC System use:

Apple RAM Memory Map (48K)

Figure 1

What this means is that programs that
create large arrays or many variables, would
be likely to build up data that overlaps into the
Hi-Res screen memory, and any data residing
there will be destroyed when graphics are
displayed. Therefore, if you write graphics
programs using Hi-Res page one (the only
onethatallows directeasy use of a mixed text
and graphics mode), your programs are
limited to a length of less than six thousand
bytes out of the Apple's 48K maximum. Re-
member also that if you include operating
instructions as part of your program, each
page of text could contain as many as 960
characters — almost one sixth of the available
memaory.

The solution to this restriction is to free-up
more memory for the program by relocating
either the program and variable storage area,
or the variable storage area alone.

PUTTING A TWO-POUND PROGRAM .
INTO A ONE-POUND MEMORY

If the numeric variable storage area is relo- .
cated above the graphics screen, the free
memory below can be used exclusively for
program storage. This technique is highly
recommended when using Hi-Res graphics
because it allows for larger programs to be
loaded, and prevents the Graphics routines
from destroying the string and numeric varia-
bles that may otherwise grow and cross into
the mapped graphics memory.

Relocating the variable storage area 1s eas-
ily accomplished with Applesoft's LOMEM
command. The LOMEM command sets the
contents of the LOMEM pointer to the user-
specified address value that is greater than
the ending address of the area to be pre-
served; for Hi-Res graphics programs, that
could be the end of Hi-Res page one. After
changing LOMEM, the program creates new
variables that are huilt up and down in mem-
ory between the LOMEM and HIMEM addres-
ses, thus avoiding the free area (Figure 2).

DOS

HIMEM —>

Numeric
Variables

LOMEM -

Variables

String

Memory used by
variables lies
between LOMEM
and HIMEM.

High resolution graphics
screen one

_ Graphics screen is
free because il is
below LOMEM.

Entire memory area
is usable for
program storage.

System RAM

Relocated LOMEM

Figure 2

Although this method protects the program
from accidental destruction of variables and
frees up-some memory that may be needed by
alarger program, the available memory is still
limited to about six thousand bytes.

RELOCATING PROGRAMS

An alternate method to free-up more mem-
ory for the program used by many program-
mers both commercially and at home, is to
relocate both the variable storage area and
the entire BASIC program. | mentioned earlier
that Applesoft programs are usually loaded
into memory starting at address $800. This,
however, is only the default address estab-
lished by BASIC during the cold start initiali-
zation followinga DOS boot. Any address can
be substituted and will result in making the
programs loac into memory at the new
address. Placing your program in memory
starting just above Hi-Res screen one allowsa
program that is more than twice as large to be
loaded and run.

$0800

Relocating the memory address where a
BASIC program will be loaded — unlike relo-
cating the variable storage area alone —
cannot be accomplished with a simple BASIC
command like LOMEM. To do this, the values
stored in the page zero. program BEGIN-
NING and END address pointers must be
altered to point to the relocation target
address, and the target address plus one,
respectively. Also, the first two bytes of the
target address, and the preceding byte, must
be cleared to a zero value. With this done, a
DOS LOAD or RUN command will automatic-
ally load the disk program file into memory at
the new address and adjust LOMEM to a point
just beyond the end of the program Like
before, the program's variables will build up
and down between LOMEM and HIMEM.

Although this typical approach may pro-
vide you with more memory for your program

HIMEM
unchanged

-+— New LOMEM

T Program split and

moved to reserve
memory for Hi-Res
graphics screen 1

Program below
User specified

FREE ZONE is
unchanged

Before and after views of program
modified by & FRE

and may be adequate for many applications, it
isvery wasteful. The six thousand bytes balow
Hi-Res page one will be left unused. yetavery
large program may still run out of memary.

Therefore, neither of these two popular
techniques for overcoming memory utiliza-
tion conflicts is either totally adequate or
designed to make efficient use of the Apole's
memory. The only method that is specifically
designed Lo overcome the problem will now
be discussed.

SPLITTING YOUR PROGRAMS

By splitting your program into two pieces, it
can be made to work around the limitations of
memory-mapped graphics. A large graphics
program can be modified to make use of the
memory both above and below Hi-Res screen
oneifitis loaded into memory, then splitand
moved at the point where it overlaps the
screen (Figure 3).

Evensmall non-graphic programs can bene-
fit from this technique if they are split and
moved to allow a machine language program
or subroutine to be loaded into memory that
was previously occupied by the program
itself.

So, for those of you who write large graph-
ics programs or make use of machine lan-
guagesubroutines, efficient utilization of your
Apple’'s memory can only be obtained by sec-
tioning your Applesoft program to fit into the
available memory space. Only & FRE canedit
your program in this way.

HOW IT WORKS

For those of you who are interested in the
inner workings of the utility, the following
section will describe the program operation
— both in its overall concept and al the
assembly source code level.

To start, let’s briefly discuss the operation
and structure of Applesoft BASIC. You, the
programmer, build an Applesoft program by
combining, in program lines. sequences of
commands that direct the computer to per-
form a specific task. In order for you to
accomplish thisin the least difficult way, your
program’'s commands are expressed to the
Applein plain English. Unfortunately, compu-
ters have no comprehension of language
beyond the simple binary patterns that all
programs must ultimately become. This
means that part of the time the Apple spends
running your program is in translating (inter-
preting) your English instructions into binary
commands that it can then process. It is this
necessary interpretive step inherent in BASIC
that & FRE takes advantage of in order to
modify your programin such a way that it will
continue to execute properly.

If you enter the following program line:

10 HOME:PRINT “HELLO"

Applesolt converts this to the following
machine readable code sequence:

00 10 08 0A 00 97 3A BA 22 48 45 4C 4C 4F
220000 00

LINE NUMBERS

The first two zeros of the converted iine are
the single-byte Applesoft End-of-Line deli-
miter character which separates one program
line from another. When Applesoft is inter-
preting the program at run time. the Eng-of-
Line character tlags BASIC to go to the next
line to continue running the program. The
four hex digits that follow are the program
lines’ Link Polinter field The Link Pointer con-
tains a 16-bit address that points to the Link
Pointer field of the next program ine. (In the
above example the next tine is located at
memory address $0810.)

The next section is the Line Number field
This is also a 16-bit number, but it holds the
value of this particular program line number.
Both the Link Pointer and Line Number fields
areformatted in the standard 6502 addressing
configuration of low byte first, and then the
high byte.

PROGRAM LINES

The next series of numbers make up the
aclualbody of the program line. These are the
coded results of what you typed into the
Apple's keyboard.

The first number, 97, is the tokenized equi-
valent of the Applesoft HOME command
(The complete list of Applesoft tokens is
available on page 121 of the Applesoft Refer-
ence Manual.) The 3A following it is the 7-bit
ASCIInumber forthe COLON command. The
number BA, also a token, represents the
PRINT command. (PRINT is the only Apple-
soft command that is also available as a key-
board macro. Instead of typing PRINT, simply
type a question mark in its place.) The num-
bers 22, 48, 45, 4C, 4C, 4F and 22 that tollow,
arethe ASCII numbers that represent the let-
ters, including quotation marks. in “HELLO"

& FRE IN ACTION

Now that you understand the basics of
BASIC, let's discuss the operation of & FRE.
When & FRE modifies your program, it must
do a lot more than just split and move what is
present in the specified Free Zone. It must
rewrite specific parts of the moved and
unmoved sections to fool BASIC into thinking
they are still a single contiguous program. In
addition. & FRE introduces a protection
scheme to guard against the almost certain
destruction of your program., after loading, by
BASIC's own line editor.

For the following discussiorn, please refer to
the & FRE Assembly Source | sting. Program
lines 108 through 148 form the initialization
portion of the routine. INIT sets the & FRE
internal Fail-safe jump vector equal to the
previous & command handler address; sets
the & command vector to & FRE; prints the
program title page; adjusts HIMEM to point
below & FRE it necessary; and jumps to
Applesoft at the warm-start entry point.

Lines 183 through 187 examine the amper-
sand token and pass control to the Fail-safe
routine if the FRE token 1s nct present.

Lines 189 through 214 read the & FRE
ADDRESS and LENGTH parameters and con-
vert them to integer numbers.

Lines 219 through 250 establish the end of
the second line of BASIC + 16 as the lowest
allowable start of a Free Zone, and cause the
NOT WITHIN RANGE message to be printed
if the user-specified Free Zone starting ad-
dress is lower

Lines 253 through 265 print the RANGE and
ERROR messages.

Lines 271 through 281 print the RANGE
message if the specified Free Zone starting
address is greater than the end address of the
last line of the BASIC program.

Lines 286 through 306 exit the routine and
print the ERROR message if line 0 of the
target program 1s missing or improperly
formatted.

Lines 317 through 366 scan the BASIC pro-
gram to find the last program line whose end
address, plus 16. is lower than the starting
address of the Free Zone. The 16 extra bytes
allow a short transparent program line to be
appendedtotheend of the last unmoved line,
forcing a programmed link to the moved lines.

Lines 372 through 464 split and move up In
memory only the portion of the program that
is within and beyond the Free Zone. The pro-
gram is moved starting from the beginning

address of the first program line that extend:
into the Free Zone, through the end addres:
of the last program line.

Lines 467 through 526 append to theendo
the last unmoved line, a transparent progran
line that forces a programmed GOTO to thi
first of the moved lines. The transparent lini
has the same Link Field and Line Numbe
values as the last unmoved line. The com
mand portion of the line is a simple GOT(
with the moved line’s number as the target.

Lines 533 through 573 adjust the las
unmoved line's Link Pointer tu point to th
new address of the next (moved) line, an
adjust the Link Pointers of the moved linest
correct for their new memory addresses.

Finally, lines 579 through 677 alter the for
matted line 0 of your program by insertingth
POKE commands that restore the Link Poin!
er address of the second last unmoved lin¢
Thisis the pratection that prevents the Apple
soft ine editcr from seeing the modified pr¢
gram and trying to “fix" it.

After your program has been modified by
FRE, saving itto disk will also save whateveri
presentinthe Free Zone. Thisisaconvenier
way to save a machine language routine ¢
Hi-Res picture as part of the BASIC progran

2 ;
NEXT OBJECT FiLE NAME 1S FRE.CCOE
93

ED. The Nioble Oracle, Amper FRE. and
Dots-Eilo are available on diskette for an

PEPTPrPree see srenss
HEAAREGAE A SRR A Introductory Price of $1895 - $150 ship-

¥ ping/handlirg ($2 50 Outside the U S) from
APPLESCF™ & FRE UTILITY o NIBBLE. PO Box 325. Lincoin, MA 01773
* Offer expires 10/31/83
BY +
.
GARY (. JAMES .
BRUNSWICK, OHIG 0
.
+C) 1983 MICROSPARC, INC. *
DOS TOOLKIT ASSEMBLER »

THE FOLLOWING AMFERSAND INITIATED ROUTINE ALLOWS THE USER TO FREE-UP
A SECTION OF MEMORY THAT HAS BECOME UNAUAILABLE DUE TC AN APFLESOFT
PROGRAM THAT 1S PRESENT IN THE DESTRED AREA CF MEMORY

THE ROUTINE OPERATES BY EXAMINING THE RES)IDENT APFLESOFT PROGRAM,
THEN MOVES WHAT 1S PRESENT WITHIN AND BEYOND THE SPECIFIED
FREE 20NE.
THE COMMAND FORMAT IS:

& FRE X,Y
WHERE X = DECIMAL STARTING ADDRESS OF MEMORY TO FREE-UP, AND Y = DECIMAL
LENGTH OF FREE ZONE.

TO USE &FRE, YOUR BASIC PROGRAM MUST FIRST BE PROPERLY INITIALIZED.
THIS 1S DONE BY CREATING A DUMMY PROGRAM LINE ZERQ THAT CONTAINS 21 COLONS.

WHEN THIS 1S DONE, RUN &FRE AS DESCRIBED ABOVE TO PRODUCE THE SPLIT PROGRAM

NOTE :

THE DUMMY LINE 15 USED BY &FRE TO CREATE TWO POKE COMMANDS THAT ARE
NEEDED TO FIX THE PROGRAM SO 1T WILL RUN PROPERLY WHEN LOADED FR(M DISK.
ALSO, AFTER RUNNING &FRE, THE PROGRAM WILL ONLY LIST UP TO THE 2°ND LAST
UNMOVED PROGRAM LINE. THIS IS OK' THE LINE ZERO POKE COMMANDS wWILL FIX
THIS WHEN THE PROGRAM 1S LATER LOADED AND RUN.

DO NOT RUN THE TREATED PROGRAM BEFORE SAVING IT TO DISK. THE DISK COPY
MUST NOT ''''' BE SAVED AFTER THE POKE COMMANDS HAUE FIXED 1T. TO LOAD
AND RUN PROPERLY, THE PROGRAM MUST SE SAVED TO DISK IMMEDIATELY AFTER
TREATMENT WITH AFRE.

APPLESOFT AND SYSTEM ENTRY POINTS

PRGBEE E£0U $47
VARISY EOU te¢
OFFSET EOU s88
HIMEM EQU 373
HIGKDS EOU %94
HIGHTR EQU 398
LOWTR EQU $9E
PRGEND EQU $AF
CHRGET EQU $B1
TXTPTR EQU %88
INTLO EQU sA8

PNTR T BEGINNING OF PROGRAM
iPNTR TO JARIABLE STORAGE
STEMP INDIRECT PNTR
APPLESOFT WIMEM POINTER
18LK AFER DEST
BLK XFER END ADR
;8LK XFER BEG ADR
iPNTR TO END OF PROGRAM
$INC TXTPTR
JAPPLESOFT INTERPRETER PNT®
SCONVERTED 2 BYTE INTEGER UALUE

FBUFR EQU $188 iFOUT STRING BUFFER

TEXT EQU sC8S! ;DISPLAY TEXT MODE

NOMIX EQU 3C8S2 iHOT MIXED MODE

PAGE ! E£QU 3CB54 iDISPLAY PRIMARY PAGE
ASWARM EQU $EB63 SAPPLESOFT WARM START

AYINT EOQU SE!BC ;CONVERT FAC TO INT

GIVAYF EQU $E2F2 1CONVERT INT T0 FAC

£ouT EQU SED34 jCONVERT FAC TO ASCII STRING 3 $.88-311€
BLTU EQu $D393 ;MOVE PROGRAM BLOCK

CLEAR EQU $D44C ;CLEAR VARIABLES AND STACK
STROUT EQU $DB3A sPRINT STRING AT Y,A TILL 8
FRMNUM EGU 30067 ;CONVERT PROGRAM TEXT TC FAC
CHKCOM EQU $DEBE jGET COMMA FROM TXTPTR

BEEP EQU $FBDC :BEEP THE SPEAKER

HOME EQU $FCS8 iHOME-LP AND CLEAR SCREEN
CROUT EQU $FDBE i1SSUE A CR

COUTY EQU s3FDF@ iPRINT A CHAR

RTS EQU $FFS@ :ADR OF RTS OPCODE

ORG 39182 5TO LOCATE FROGRAM JUST EELOW D0S WITH MAXFILES = *°

i INIT TRANSFERS A PREVIOUSLY DEFINED AMPERSAND HANDLER ADDRESS
5 TO THE " & FRE * FAILSAFE JUMP VECTOR. FAILSAFE ALLOWS FOR
i1 MORE THAN ONE AMPERSAND ROUTINE TO BE OPERATIVE AT THE SAME
i TIME. IF THE & COMMAND FAILS RECOGNITION, CONTROL 15

i PASSED ON TO THE PREVIOUSLY ADDRESSED AMPERSAND HANDLER.

i INIT ALSO TESTS THE APPLESOFT HIMEM POINTER AND ADJUSTS 1T

i TO POINT TO JUST BELOW & FRE IF 1T CURRENTLY 1S SET HIGHER

continucd on next page

9182:

9102:

9182:

9102;

9192:

9182:AD F6 83
9185:8D 3F 92
9108:AD F7 03
9188:80 48 92
918E:

918E:A9 4C
9110:80 F5 03
9113:A9 38
9115:8D F& 83
9118:49 92
P11A:8D +/ 83
9110:

911D:AD 51 €8
91201AD 52 CO
9123:AD 54 C8
9126128 58 FC
9129:28 BE FD
912C:28 8E FD
912F:

912F1A9 5C
9131:A8 91
9133:28 34 08
9136:

9136:28 8E FD
9139:A9 85
913B:A8 91
9130:28 34 DB
9148128 8E FO
9143:28 8E FD
9146

9146:38
9147149 89
91491E5 73
9148:A9 91
914D:ES 74
914F:80 88
9151:A9 88
9153:85 73
9158:A9 91
9157:85 74
915914C 83 €9
915C:

915C:

915C:C1 D8 08
915F:CC C5 D3
9162:CF Cé D4
9165148 A7 A6
9168148 €6 D2
9168:CS A7 AR
08 02 CF
9171:C? D2 C1
9174:C0 A8 D3
9177:08 CC €9
917A:D4 D4 CS
917D:D2 A8 D2
9188:C5 CC AD
9183:81
9184100
9185:C2 D9 AB

9188:C7 Ct D2

91BE:C1 CD C5
9191:D3 AB AD
9194:48 A8 C3
9197149 AB BI
9?19A:89 B8 B3
919D:A8 CD C?
91A8:C3 D2 CF
91A3:03 D@ €1
91A6:D2 C3 A8
91A9:C9 CE C3
91AC:AE
P1AD188
91AE:BE BF RE
91B1:BE BE A8
91B4:CE CF D4
91B7:A8 D7 C9
91BA:D4 C8 C9
91BD:CE A8 D2
91C8:C1 CE C7
91C3:CS A8 BC
91C6:BC BC BC
91C9:BC
91CA:88
91CB:D® D2 CF
91CE:C7 D2 C!
9101:CD AB D3
91D4:D8 CC C9
91D7:D4 AB CI
91DA:CE C4 AB
910D:CD CF D6
91EB:CS C4 AR
91E3:C1 D4 A8
91E6:CC C9 CE
91E9:CS A

103 ;
104 ;
105 ;
186 ;
187 ;
108 1
189
118
111
12
13

NIT

115
116
117
1e
19 3
128
12
122
123
124
125
126
127
128
129

131

132
133
134
135
136
137
138
139
148
141

142
143
144
145

152
153 MSG2

154
155 MS63

156
157 MSG4

LDA $3F¢
STA JMPAMP+1
LDA $3F7
STA JMPAMP+2

FER OLD “&° ADR TO FAILSAFE VECTOR

LDA W$4C

STA $3F5 3JMP OPCODE
LDA W)START

STA $3F6 ;PROG LO ADR BYTE
LDA W(START

STA $3F7 ;PROG 111 ADR BYTE

L TEXT
LDA NOMIX

LDA PAGE1

JSR HOME

JSR CROUT JHOME & CLEAR SCREEN

JSR CROUT
LDA #>MSG1
LDY #(MSGI
JSR STROUT iPRINT LINE ONE

JSR CROUT

LDA WOMSG2

LDY W(MSG2

JSR STROUT jPRINT LINE TWO

JSR CROUT

JSR CROUT

SEC

LDA W)INIT-2 ;COMPARE THE CURRENT SETTING OF APPLESOFT’S HIMEN
SBC HIMEM iPOINTER WITH THE STARTING ADDRESS OF THE & FRE
LDA WCINIT ;PROGRAM. 1F HIMEM 1S ALREADY SET LOWER, THEN DO
SBC HIMEM#1 sNOTHING . OTHERWISE ADJUST HIMEM TO POINT BELOM
BGE NOSET ;THE & FRE PROGRAM.

LDA WINIT-2

STA HIMEM jRESET HIMEM POINTER TO BELOW &FRE

LDA #CINIT

TA HIMEM+1

JMP ASWARM ;60T0 APPLESOFT, INITIALIZATION COMPLETE.

ASC *APPLESOFT ‘& FRE’ PROGRAM SPLITTER REL-1"

OFB @

ASC *BY GARY JAMES - (C) 1983 MICROSPARC INC.*

DFB R

ASC *3>>3>> NOT WITHIN RANGE (< (<(*

DFB 8

ASC *PROGRAM SPLIT AND MOVED AT LINE *

158 OFB
E 159 MSG5 ASC
8
E
1]
D
4
8
8
9204:C3 CF D2
9287:D2 CS C3
928E:08 168 OF8
928F : 161 MSB
928F:08 €8 182 LINEBST W
34 38 143
3A 3A
3A 3A
34 24
3A 3A
3A 34
34 3

TEMPORARY

;
ADRLO DS
LENLO DS
FREND 0S
LASTLN DS
TEMP1 0s
TEMP2 DS
TEMP3 DS
EOFLIN DS

e e | aes;

TART LDA

cLe
LDA
ADC
ADC
STA
LDA
ADC
sTA

LDy
LDA
STA

SET PROGRAM BEGINNING

8
*»> LINE 8 OMITTED DR INCORRECT (<"
8
OFF
] FOR LINE He
o

STORAGE REGISTERS USED BY “ & FRE ’.

JTEMP START ADR

STEMP LENGTH

;TEMP FRE END ADR

sLAST UNMOVED LINE POINTER
{GENERAL PURPOSE STORAGE
;HOLDS FIRST FREE ZONE LINE NO.
iLAST LINES NUMBER

3END OF FIRST LINE ADDRESS

NNRRNNRNN

WS$D6
8
(TXTPTR) ,Y CHK IF FRE COMMAND
0K

§6ET * FRE " TOKEN

RTS jFAILSAFE JUMP VECTOR

CHRBET 3POINT TXTPTR TO ADR

FRMNUM jGET START ADR TO FAC

AYINT jCONVERT 1T TO INT

INTLO+1

"6 ;SUETRACT 16 FROM ADR TO ALLOW
ADRLOD jROOM FOR THE APPENDED * GOTO *
INTLO

L1}

ADRLO+1

CHKCOM ;CHK FOR COMMA DELIMITER
FRMNUM $BET LENGTH TO FAC

AYINT sCONVERT IT TO INT

INTLD+1

LENLO

INTLO

LENLO+1 $XFER LENGTH TO LENLO

LENLO

ADRLO

#16 3FIX BECAUSE OF PRIOR ADJUSTMENT
FREND

LENLO+1

ADRLO+1

FREND+1 jDERIVE FRE ZONE END ADR

= END OF SECOND LINE

»e

PRGBEG
OFFSET
PRGBEG+1
OFFSET+1
COFFSET), Y
EOFLIN

JOFFSET = LINK FIELD ADR OF 1°ST LINE

(OFFSET) Y
EOFLIN+1 jEOFLIN = NEXT LINE LINK FIELD ADR
OFFSET
TEMPY
OFFSET41
TEMPI+1

jTEMPORARILY SAVE OFFSET VALUE

FRE ADR ¢ OR = PROGRAM BEGINNING

EOFLIN
OFFSET
EOFLIN+1
OFFSET+1

3GET 2°ND LINES LINK VALUE
SXFER IT TO OFFSET

3SET YREG = 8

(OFFSET),Y ;GET 3“RD LINES LINK FIELD ADR

ADRLO ;COMPARE 1T TO THE FREE 20NE START ADR

(OFFSET), Y

ADRLO41

NXTCHK jBRA IF FREE ZONE START) END OF 2’ND PROGRAM LINE ¢ |

9289:20

8
9338:81
9330:8D
9348:C8
9341:81
9343:80

BE
21
oD
8E

8E
EC

ce

(3]

(13
08
88
L34
89

34
88
82
17
cé

BE

FD

0B
F8
FB
FD

FD

92

92

92

92

92

92

92

92

92

92
92

92
92

92

92

92

92

92

92

20”

253 EXIT JSR CROUT ;OTHERWISE PRINT MESSAGE AND EXIT
254 LDA IOMSG3

255 LDY W(MSE3

256 EXITI JSR STROUT ;PRINT RANGE MESSAGE

257 JSR BEEP

258 JSR BEEP

259 JSR CROUT

268 RTS SRETURN TO BASIC

261 ;

262 EXIT2 JSR CROUT

263 LDA #MSGS

244 LDY W#(MSGS

265 JNP EXITI ;PRINT LINE @ ERROR MSG

266 ;

267 ;

268 ; EXIT IF PROGRAM END ADR ¢ FRE ADR

269 ;

270 ;

271 NXTCHK LDA TEMPL ;RESTORE ORIGINAL OFFSET VALUE
272 STA OFFSET

273 LDA TEMPI+

274 STA OFFSET+1

275 ;

276 SEC

277 LDA ADRLO

278 SBC PRGEND

279 LDA ADRLO+1

280 SBC PRGEND+1

281 BGE EXIT BRA IF FRE 20NE ADR > END ADR
282 ;

283 ;

284 ; EXIT IF PROGRAM LINE NUMBER 2ERO 1S OMITTED OR INCORRECTLY INITIALIZED
285 ;

286 cLe

287 LA #1 SET OFFSET = LINE 8 LINK ADR + 1
288 ADC OFFSET

289 STA OFFSET

290 LDA %8

291 ADC OFFSET+1

292 STA OFFSET+1

293 ;

294 SEC

295 LDA EOFLIN

294 SBC OFFSET

297 SBC W2

298 P W17 CHECK FOR 21 COLONS IN LINE @
299 BNE EXIT2

308 TaY ;YREG = OFFSET VAL TO LINE 8 LAST BYTE
301 ;

302 LINBTST LDA COFFSET),Y

303 CMP LINEBST-1,Y ;CMP LINE 8 BYTE WITH CHECK STRING
304 BNE EXIT2

385 DEY

386 BNE LINBTST ;60 DO NEXT BYTE

387 ;

308 ;

389 ;

38 ;

311 ; START .OF ROUTINE THAT RELOCATES THE SECTION OF PROGRAM
312 ; THAT OVERLAPS THE * FRE * MEMORY AREA. THE PROGRAM
313 ; 1S MOVED FROM THE BEGINNING ADDRESS OF THE LINE NUMBER
314 ; THAT IS FOUND EXTENDING INTD THE FRE 20NE.

35 ;

316 ;

317 MOVEIT LDA PRGBEG

318 STA TEMPI

319 LDA PRGBEG+1

328 STA TEMP1+l ;XFER PROG START ADR -) TEMPI

321

322 FNDLIN LDY #1

323 0UT! DEY ST Y =8

324 LDA TEMP1

325 STA LASTIN

326 STA OFFSET

327 LDA TEMP1+1

328 STA LASTLN+1

329 STA OFFSET+1 ;POINT OFFSET & LASTLN TO LINK FIELD OF CURRENT LINE
330 ;

331 LDA COFFSET),Y ;GET LINK FIELD LO-BYTE

332 STA TEMP1

333 INY

334 LDA (OFFSET),Y ;GET LINK FIELD HI-BYTE

335 STA TEMPI+1 ;LOAD TEMPI WITH ADR OF NEXT LINES LINK FIELD
336 INY

337 LDA COFFSET),Y ;GET LINE NUMBER LO BYTE

338 sTA TEMP3 SAVE 1T

339 INY

348 LDA (OFFSET),Y ;GET HI BYTE

341 STA TEMP3+1 ;CURRENT LINES NUMBER -)> TEMP3
342 LOY %8

343 ;

344 LDA TEMPL

345 STA OFFSET

£ LDA TEMPI+1

347 STA OFFSET+l ;SET OFFSET = NEXT LINES LINK FIELD ADR
348 ;

349 LDA (OFFSET),Y ;GET 37RD LINES LINK FIELD LO BYTE
3se STA TEMP2

351 INY

352 LDA (OFFSET),Y

353 STA TEMP2+l ;SAVE HI BYTE

354 5

355 SEC ;PREPARE FOR COMPARISON OF LINK ADDRESS VALUE
356 LDA TEMP2

357 SBC ADRLO $SUBTRACT LD BYTES

358 LDA TEMP2+1

359 SBC ADRLO+1 ;SUBTRACT Kl BYTES

360 BLT OUT! RA TF LINK FIELD VALUE

381 INY ;1S LESS THAN STARTING ADDRESS
362 LDA (OFFSET),Y ;GET LINENO LO-BYTE

363 sTA TEMP2

364 INY

365 LDA (OFFSCT),Y ;GET LINENO H1-BYTE

366 STA TEMP2+1

£378: 368 ; END WITH NEXT LINENO IN TEMP2 ; CURRENT LINEND IN TEMP2 ; LINE ADR IN OFFS 73F8: 465
9378: 369 ; AND LAST UNMOUVED LINE STARTING ADR IN LASTLN 93F8: 86 ;
9378: a7e ; 93F8:AD 31 92 447 DOLIND LDA TEMP2+1 ;TARGET LINE NUMBER HI BYTE
9378: 37 93FR:AC 38 92 468 LOY TEMP2 0 BYTE
9378: 372 ; PRESET KIGHTR & LOWTR FOR BLTU 93IFE:28 F2 E2 469 JSR SIVAYE ONVERT LINO TO FAC
9378: 373 ; 9481:28 34 ED 478 JSR - FOUT ;CONVERT FAC TD ASCIT STRING
9378:A5 88 LDA OFFSET 9464:49 CB an LDA 4)MSG4
937A:85 98 STA LOWTR 9406:A8 91 472 LDY M(MSG4
937C:AS 89 LDA OFFSET+1 7488:28 3A DB 473 JSR STROUT ;PRINT MOVED LINE STRING
937€:85 9¢ STA LOWTR+! ;LOWTR 9488:A9 80 474 LDA #)FBUFR
9380 940D:A8 81 a7s LDY W(FBUFR
9390:A5 AF LDA PRGEND 949F:28 34 DB 474 JSR STROUT ;PRINT LINE NUMBER
9382:85 94 STA HIGHTR 9412:28 BE FD 477 JSR CROUT
9384:A5 B8 LDA PRGEND+1 9415: 478 ;
9386:85 97 STA HIGHTR#1 9415:AD 24 92 479 DA FREND
sl 9418:18 488 cLe
9388: ; TEST FOR PROGRAM END INSIDE OR BEYOND FREE 2ONE ;::;;g gé 92 :g; :22 :éHPI
g:;gg ; THEN SELECT WHICH TYPE OF BLOCK MOVE TO USE 941E:AD 28 92 483 LDA FREND+1
9368138 = 9421 :69 88 484 ADC 48
i 9423:80 2F 92 485 STA TEMPI+1 ;LINK FIELD ADR DF FIRST MOVED LINE -) TEMP1
9389:A5 AF LDA PRGEND KoE P
938B:ED 2A 92 SBC FREND 3 il SO0
938E:AS BB LDA PRGEND+1 P ERR Eupi
9398:ED 28 92 SBC FREND+1 e STA ROFFeETILY
9393:88 33 8GE CBA iBRA IF PRUGRAM END , FKEE ZONE END AT
9395: 498 INY
9395: P F a91 LDA TEMPI+]
2398: UL L S R —— a92 STA (OFFSET),¢ ;APPEND LINK FIELD ADR OF MOVED LINE
9395: SET PRGEND = VARIST = HIGHDS+1 493
9395: 494 INY
9395:38 SEC 495 LDA TEMP3
9396:A5 AF LDA PRGEND 494 STA (OFFSET ¢
9398:€5 88 SBC OFFSET 457 INY
939A:00 TAX 498 LDA TEMP3+1
9398:A5 B8 LDA PRGEND+1 499 5TA C(OFFSET),Y ;APPEND DUPLICATE LINE NUMBER
939D:E5 89 SBC OFFSET+1 560 INY
939F :A8 Tar s8) ;
bonds 582 LDA H$AB :"60TO" TOKEN
93A0:18 cLe s83 STA (OFFSET),Y ;APPEND *"GOTO"
93A1:88 ™A 584 GETSTR (NY
9342:6D 24 92 ADC FREND 59 LDA $FB.Y {GET FAC STRING CHAR
93A5:98 84 BCC NOCRY1 586 STA (OFFSET»,r ;PUT iT AT EOL
93A7:18 cLe 507 SNE GETSTR @ SET NEXT CHAR
93A8:69 81 At #t 508 ;
93MA:38 SEC 944C:C8 589 INY
$3AB:80 82 BCS CARY1 944D:AD 2€ 92 518 L0A TEMPI
$3aD:47 81 NOCRY1 ADC W1 9458:91 88 511 STA (DFFSET),Y
93AF :85 94 CARYI STA HIGHDS 9452:€8 s12 T
93B1:85 69 STA UARIST
9383:85 AF STA PRGEND 9303148 616 TAY
9385148 Tax 9504:AD 20 92 617 LDA LASTLN+1
e pman g M,
9387:6D 28 ADC FREND+1 :
9384:85 95 STA HIGHDS+! IINCANJNED 2R ISR EOUY
yapnis & P ili Al 958F:28 57 95 622 ISR TTO
9306148 Ty 9512:A8 81 623 LOY W1
93C1:8a A 9514128 64 95 424 JSR SAVEOFF
> g 9517:28 57 95 425 JSRTTO
eezian o2 oo By {HOVE(RROGRA 951A:28 47 95 626 JSR DOPOKE
9308180 38 BES DOLING 9510:20 64 95 627 JSR DOCOMMA
93081 ; 9528 428 ;
9308+ ; 9520:AD 2C 92 429 LDA LASTIN
9308+ ; PROGRAM END BEYOND FREE ZONE END LI LA
93C8: ; SET HIGHDS = PRGEND + LENLD,HI 9523185 89 632 STA OFFSET+!
;gggi ; SET PRGEND = UARIST = HIGHDS 9524148 81 33 Loy
$ i 952C:B1 88 634 LDA (OFFSET),Y
93C8:38 cea SEC 952E:A8 435 TAY
93C9:AD 24 LDA FREND 952F:A9 08 636 LDA ¥
93CC:ES €8 SBC OFFSET 9531:28 F2 €2 637 JSR GIVAYF
93CE:0A TAX 9534128 34 ED 438 JSR FOUT
93CF:AD 2B LDA FREND+1 9537149 88 439 LDA #8
93D2:E5 89 SBC OFFSET+1 9539:A8 81 448 LDY 1
93D4:A8 TAY 9538:91 88 441 STA (DFFSET),Y ;CLR LAST LINE LINK HI BYTE
9305: i 953D:20 57 95 442 JSR - TTO
9305:18 ce 9548:C8 443 INY
93D6:84 445 ™A 9541128 4C 95 644 JSR POCODE
9307:65 AF 446 ADC PRGEND 9544 845 ;
93D9:98 86 447 BCC NOCRYZ 9544:4C 4C D6 646 JMP CLEAR SLET APPLESOFT CLEAN UP REST
9308:18 a48 cLe 95471 647 5
930C:69 81 449 ADC M1 9547:A9 B9 448 DOPOKE LDA #$B9 {POKE COMMAND TOKEN
93DE:38 458 SEC 9549:C8 449 INY
93DF:B8 82 451 BCS CARY2 9544:91 08 458 POKCODE STA (OFFSET),Y
452 NOCRY2 ADC %1 954C:C8 651 POCODE INY
453 CARY2 STA HIGHDS 934D:B9 FE 88 452 LDA $FE,Y 16ET STRING CHAR.
454 STA UARIST 9556:08 F8 453 BNE POKCODE ;BRANCH IF NOT DONE
455 STA PRGEND 9552:88 654 DEY
456 TAX 455 JSR SAVEOFF
457 A 456 RTS
458 ADC PRGEND+! 657 ;
459 STA HIGHDS+1 458 TTO LDA TEMP1
448 STA UARIST+! 459 STA. DFFSEY
461 STA PRGEND*1 468 LDA. TERIY)
482 TAY 861 STA OFFSET+1
463 ™A 956 a:g g; "
P 9563148 4
93 03 464 JSR BLTU ;MOVE PROGRAM e oay
9564:A9 2C 665 DOCOMMA LDA H8$2C JASCI1 COMMA
9566:C8 446 INY
KEY PERFECT 4.8 9567:91 98 467 STA (OFFSET),Y
- RN ON 9569168 468 RTS
FRE.CODE 9564 669 3
- 9564118 676 SAVEOFF CLC
ADDR# -~ ADORW 9568:98 671 TYA
2 o 956C:65 88 672 ADC OFFSET
181 936E:8D 2E 92 473 STA TEMPI
APPLE CHECKER 9571:A9 88 674 LDA W8
; 9573:65 89 675 ADC OFFSET+1
ON: FRE.CODE 9575:8D 2F 92 676 STA TEMP1+1
TYPE: B 9578160 677 RTS
e 95791 678 ;
LENGTH: 8477 95791 &79 ;
CHECKSUM: 2F 9579: 80 ;
5 i 95791 481 END EQU *
95791 882 ;
0477: 483 LENGTH EQU END-TNIT ;PROGRAM LENGTH
9579: 684 3
9579: 485 ;
; eA72 9562 : ¥#x SUCCESSFUL ASSEMBLY: NO ERRORS
" TOTAL PROGRAM CHECK 15 : 0477

