Graphics Workshop

DOBL
Pl

DOS 33

2 [eRED
CS

The Graphics Workshop continues its explo-
ration of block shape animation in Part Il of
the Double Hi-Res series. Use the routines
developed last month on your 128K /e or //c
for simple block shape animation.

by Robert R. Devine
1415 West 19th St.
El Dorado, AR 71730

ast month we described processes and
I programs for drawing block shapes on

the Double Hi-Res screen. This month
we'll learn the fine art of DHR animation.
You'll need the programs we developed last
month, and it'll help to refer back to the article
and figures.

Animating the Shape

Now that we've got some shapes to work
with, let’s try our first animation. We're going
to demonstrate not only how we can use the
DRAW and DRAWDN routines for animation
(without the need to erase), but we’ll also see
how we can make our shapes appear to move
behind other objects on the screen.

First we'll draw a horizontal orange barrier
through the middle of the screen. Then we'll
move the spaceship up and down the screen
with the shape always moving behind the bar-
rier. Before we actually run the program, let’s
look at Figure 1, which shows how we go
about disappearing and reappearing from
behind the barrier.

The first thing you need to understand is that
you don’t need to draw the entire shape.
There is nothing included in your Shape Table
which defines where it ends. You can never
change the HR-HL dimensions of your shape

without destroying the appearance of the
shape; however, you can change the VI-VB
dimensions of the shape. Once a driver routine
has completed its work within the VT-VB
dimensions you have specified, it will end. If
you set VT-VB dimensions less than the actual
size of the shape, you will only draw part of
the shape.

This is where the difference in approach be-
tween DRAW and DRAWDN comes into play.
If you only want to draw the top part of your
shape, you can use DRAWDN, and the only
bytes that will appear will be those between
VT and whatever VB you have specified. On
the other hand, if you only want the bottom
parts, you can use DRAW, and the only parts

of the shape that will be drawn are those be-.

tween VB and whatever VT you have
specified.

You could also do the same thing with REV-
DIR and reverse only the lower parts of your
shape; however, you should be aware that since
REVDIR automatically reSCANSs the shape,
your table will, as always, match exactly what’s
on the screen...but maybe that’s just what you
want.

If you look at Figure 1 you will note that
our barrier is set from Y-coordinates 90
through 105. Once the shape gets down to
VB=89, we will leave it alone and keep IN-
Crementing VT until it is also 89, at which
time our shape will appear to have moved
behind the barrier.

What has really happened is that we've kept
moving it downward, erasing it line by line at
the barrier until it is no longer on the screen.
To bring the shape out from behind the bar-
rier, we will begin with BOTH VT and VB
set at 106. We will then leave VT alone while
we keep INCrementing VB and reDRAWing
until the entire shape has been brought, line
by line. back onto the screen. We will use, on
the top side of the barrier, DRAWDN (because
we only want the top parts of our shape #143),
and we'll use DRAW and shape #144 below

the barrier (becausec we only want the bottom
parts of our shape).

Our demonstration program is contained in
Listing 1. Let's see how the program works.

How ANIMATION.1 Works

Lines 80-150 should be familiar and easily
understandable. The only thing new here is
that we've added CALL 37517 to line 130,
which turns off the EOR functions of DRAW
and DRAWDN. If we left the EOR function
on, our shape would leave a trail behind it
because it would be EORing with its own data
bytes.

Line 160 draws the orange barrier across the
screen using the line 140 subroutine to
translate our 0-559 coordinates into 0-279
HPLOT coordinates.

Line 170 POKEs the starting shape
parameters into memory.

Line 190 moves the shape downward until
it reaches the edge of the barrier. First it
DRAWDNS the shape, then it uses GODOWN
to INCrement VT and VB in readiness for the
next draw.

Line 200 — At this point VB=89, so we
continue to INCrement VT, then DRAWDN
until VT also equals 89, at which time the
shape has disappeared from the screen.

Line 210 switches to the proper shape for
use with DRAW.

Line 220 sets VT and VB equal to 106, then
INCrements VT and DRAWs until we have
brought the shape fully back onto the screen,
just below the barrier.

Line 230 then moves the shape to the bot-
tom of the screen by DRAWing it and then us-
ing GODOWN to INCrement VT and VB for
the next drawing operation.

Line 250 is exactly the opposite of line 230.
Here we DRAW the shape, then use GOUP
to DECrement VT and VB until we again
reach the barrier.

Line 260 — At this point VT=106, so we

leave VT alone and continue to' DECrement
VB and redraw the shape until it disappears
behind the barrier.

Line 270 changes back to shape #143 for use
above the barrier with DRAWDN.

Line 280 — Next we set both VT and VB
to 89 and keep DECrementing VT until the
shape has been brought from behind the
barrier.

Line 290 — Finally we use DRAWDN and
GOUP until the shape again reaches the top
of the screen.

Line 300 — At this point we haven't devel-
oped any smooth moving horizontal animation
routines, so this line first enables the EOR
function with EORON, then erases the shape.
and again disables the EOR with EOROFF.

Line 310 uses the MOVERT routine to IN-
Crement HR and HL in readiness for the next
trip down.

Notice that we have not added trap to keep
us from going off the right edge of the screen,
as this protection is built into the MOVERT
routine. Once the shape gets to the right edge,
it will simply keep moving up and down in
the same place.

This little program, while rather simple and
not terribly sophisticated, should give you a
good idea of how to work with DRAW and
DRAWDN.

Speeding Up the Animation

One way that you could make the anima-
tion a bit faster would be to use the YINCRU
and YINCRD routines instead of GOUP and
GODOWN. which would allow you to move
your shapes more than one Y-coordinate per
move. If you were to do this, and avoid the
need for any erase activities, you would need
to allow a number of blank lines above and
below your shape, equal to the YINCR you
selected. While our animation is quite smooth
and reasonably fast, the best way to speed
things up would be to bypass the Applesoft in-
terpreter and use straight machine language.

To get an idea of just how much machine
code would speed things up, enter the hex code
in Listing 2, which is an exact machine code
translation of lines 170-320. Save it to disk
with the command:

BSAVE FAST.ANIMATION,A$4000,L$B7

To try out the machine code version, delete
lines 170-320 from Listing 1 and add this new
Line 170:

170 PRINT CHR$(4)“BLOAD
FAST.ANIMATION": CALL 16384

You'll quickly find that our animation is now
too fast, but that's okay. If you were to build
a program around it, with all its other various
activities, the speed would probably be just
about right.

Before we call it quits for this month, let’s
take a look at one more animation demonstra-
tion that performs some horizontal animation,
and makes use of the REVDIR routine. At this
point we still don't have any smooth-moving
horizontal shifting routines. (We'll get into that
next month.) However, by moving 14 horizon-
tal dots per move, we can get some reasonable
animation.

In our test we'll draw an arrow with
HPLOTS, then SCAN it into a Shape Table,
and finally move it back and forth across the
screen. At each side of the screen we’ll REV-
DIR the shape to point it in the proper direc-
tion, then move it down 10 lines after each
round trip across the screen. This test 1s in-
cluded in Listing 3.

FIGURE 1: OVERLAPPING SHAPES

HL HR
—VT = INCREMENT FROM 76-89 TO
o " _| | MOVE BEHIND BARRIER
8§,ETH?§ 2,‘%’5’” = DECREMENT FROM 89-76 TO
OF BARRIER REAPPEAR FROI\:”};EHE;SD BARRIER
-— =
I | 90
I
|
i BARRIER I
1
I 105
USE “DRAW" «— VT=106
ON THIS SIDE
OF BARRIER
I[_ — VB = DECREMENT FROM 119-106 TO
HL HR MOVE BEHIND BARRIER

= INCREMENT FROM 106-119 TO
REAPPEAR FROM BEHIND BARRIER

Lines 80-170 initialize Doublc Hi-Res and
draw our arrow shape on the screen. Since we
don’t yet have any nice self-erasing shift
routines, the shape includes 14 blank dots (one
extra address) behind it to take care of all the
erasing chores. This means that the actual
width of the shape is three addresses; how-
ever, we've made it four addresses wide to
allow for erasing.

Line 180 sets all the shape parameters and
SCANSs the shape into a table.

Line 190 sets YINCR so that we can move
the shape down 10 lines after each trip across
the screen.

Line 200 turns off the EOR functions of
DRAW.

Line 210 moves the shape rightward across
the screen. After each DRAW, the MOVERT
routine is used to INCrement HR and HL.

Line 220 reverses the shape to point left-
ward. You'll note that since REVDIR is a
DRAWing routine, it took care of its own eras-
ing of the old arrow as it drew the new one.

Line 230 moves the shape leftward across
the screen. Here we've used the MOVELF
routine to DECrement HR and HL.

Line 240 — Now that we're back where we
began, we erase the shape from the screen.

Line 250 is used to test VB to see if we're
at the bottom of the screen. If we are, then
VT and VB are reset for 0 and 13. Next, the
shape is redrawn and reversed (in one opera-
tion) at the top of the screen using REVDIR.

Line 260 — If we're not at the bottom of
the screen, then the shape is moved down 10
lines by using YINCRD to add 10 to both VT
and VB, and the shape is reversed and redrawn
on the screen.

The handy thing about REVDIR is that in
some cases it can save you the effort of needing
right- and left-facing Shape Tables. In this test
we managed to display two different arrows
on the screen, even though we only created
one Shape Table.

Conclusion

Now that you have an assortment of different
Double Hi-Res drawing routines, you should
be able to tackle some animation of your own
— enjoying some of the advantages of machine
code speed, and Applesoft flexibility, without
the need to be concerned with all the complex-
ities of the Double Hi-Res screen. For a map
of the entire DHR driver, see Figure 2. See
you next month!

FIGURE 2: MAP OF THE DHR DRIVER

SCREEN
ADDRESS
TABLE
$9480
SETUP
$946F
YADDR
$9464
KILL
$944E
INIT
$9441
HGR
$9428
HOME
$941C
SCAN
$93DA
DRAW
$9394
DRAWDN
$934C
REVDIR
$92F8
YINCRD
$92E5
YINCRU
$92D4
GODOWN
$92C9
GOUP
$92C0
MOVELF
$92B7
MOVERT
$92AC
EOROFF
$928D
EORON
$9283

Total length = 893 bytes

37999

37988

37966

37958

37928

37916

37850

37780

37708

37624

37605

37588

37577

37568

37559

37548

37517

37507

LISTING 1: ANIMATION.1

10
20
30
40
50
60
79
80
90
100
110
120
130

140

150

160

170

180
190

200

220

239

240
259

260

280

290

300

310
320

REM secinnene Tessaresaannnse

REM . ANIMATION 1 .

REM + BY ROBERT R. DEVINE «

REM « COPYRIGHT (C) 1984 .«

REM +« BY MICROSPARC, INC. .

REM « LINCOLN, MA. 01773 »

REM Sresnesesssrsseersnsane

PRINT CHR$ (4)"BLOAD DHR.DRIVER": CALL 3
7999: HIMEM: 37507: REM LOAD/SETUP/PROT
ECT

PRINT CHRS (4)"BLOAD SHAPE-D #143":

CHR$ (4)"BLOAD SHAPE-U #144"

CALL 37953: REM INIT

HGR : CALL 37928: REM CLEAR DHR SCREEN
POKE 49153 .0: POKE 49234,0: REM 80STORE
/FULL SCREEN

HCOLOR= 3: CALL 37517: GOTO 160: REM HP
LOT MODE ON/EOR FUNCTION OFF

POKE 49236,8:C = INT (X / 7): IFC / 2 =

INT (C / 2) THEN POKE 49237 .0: REM FL

IP PAGE2

PRINT

XC.= INT (C/ 2) 4 X/ 7 - C:XC = INT (
XC =« 7 + .5): RETURN
FOR X1 = 3 TO 559 STEP 4:X = X1 - 1: GOSUB

140: HPLOT XC,98 TO XC,6185:X = X1: GOSUB
140: HPLOT XC,98 TO XC,105: NEXT : REM
DRAW HORIZONTAL ORANGE BARRIER

POKE 251,143: POKE 252,08: POKE 253,13: POKE
254 ,2: POKE 255,0: REM STARTING SHNUM/V
T/VB/HR/HL

REM «.. GOING DONN =+«

FOR VB = 13 TO 88: CALL 37788: CALL 3757

7. NEXT VB: REM DRAWDN/GODOWN TO BARRIE

R

FOR VT = 76 TO 89: POKE 252,VT: CALL 377
©8: NEXT VT: REM MOVE SHIP BEHIND BARRI
ER
POKE 251 ,144:
W' SHAPE
POKE 252 ,106: FOR VB = 106 TO 119: POKE
253 ,VB: CALL 37780. NEXT VB: REM BRING
SHIP FROM BEHIND BARRIER
FOR VB = 119 TO 191: CALL 37780: CALL 37
577: NEXT VB. REM DRAW/GODOWN TO BOTTOM
OF SCREEN

REM CHANGE TO NORMAL ‘DRA

REM «++« GOING UP ss+

FOR VT = 178 TO 107 STEP - 1: CALL 3778
@: CALL 37568: NEXT VT: REM DRAW/GOUP T
O BARRIER

FOR VB = 119 TO 106 STEP - 1: POKE 253,

VB: CALL 37788: NEXT VB
BEHIND BARRIER

POKE 251.143: REM CHANGE TO 'DRAWDN' SH

APE

POKE 253.89: FOR VT = 89 TO 76 STEP - 1

. POKE 252,VT: CALL 37708: NEXT VT: REM
BRING SHIP FROM BEHIND BARRIER

FOR VT = 88 TO @ STEP - 1: CALL 377@28: CALL
37568: NEXT VT: REM DRAWDN/GOUP TO TOP

OF SCREEN

CALL 37507: CALL 37708: CALL 37517:
EORON/ERASE /EOROFF

CALL 37548: REM MOVERIGHT

GOTO 199: REM START DOWN AGAIN

REM MOVE SHIP

REM

120
130

140

150

LISTING 3: ANIMATION.2

REM Seestessaranasrsentanns
REM - ANIMATION.2 .
REM « BY ROBERT R. DEVINE «
REN « COPYRIGHT (C) 1984 «
REM « BY MICROSPARC, INC. «
REM « LINCOLN, MA Q1773 «

REM sansssessranrnraernbene

PRINT CHR$ (4) "BLOAD DHR.DRIVER": CALL 3
7999: HIMEM: 375@7: REM LOAD/SETUP/PROT
ECT

CALL 37953: REM INIT

HGR : CALL 37928: REM CLEAR DHR SCREEN
POKE 49153,08: POKE 49234,0: REM B80STORE
/FULL SCREEN

HCOLOR= 3: GOTO 1590

POKE 49236,0:C = INT (X / 7): IFC / 2 =

INT (C 7/ 2) THEN POKE 49237,0: REM FL

IP PAGE2

XC = INT (C/ 2) + X'/ 7 =C:XC = INT (
XC « 7 + .5): RETURN
FOR X = 14 TO 37: GOSUB 138: HPLOT XC,6:
NEXT X

LISTING 2: FAST.ANIMATION

4000- A9 8F 85 FB A9 00 85 FC
4008- 85 FF A9 @D 85 FD A9 @2
4010- 85 FE A9 0D 85 E3 20 4C
4018- 93 20 C9 92 E6 E3 A5 E3
4p920- C9 59 90 F2 A9 4C 85 E3
4028- 85 FC 20 4C 93 E6 E3 A5
4030- E3 C9 5A 90 F3 A9 90 85
4938- FB A9 6A 85 FC 85 E3 85
4940- FD 20 94 93 E6 E3 A5 E3
4048- C9 78 99 F3 A9 77 85 E3
4050- 20 94 93 20 C9 92 E6 E3
4p58- A5 E3 C9 CO 99 F2 A9 B2
4060- 85 E3 20 94 93 20 CO 92
4068- C6 E3 A5 E3 C9 6B BO F2
4070- AS 77 85 E3 85 FD 20 94

4978- 93 C6 E3 A5 E3 C9 6A BO
4080- F3 A9 8F 85 FB A9 59 85
4@88- FD 85 E3 85 FC 2@ 4C 93
4090- C6 E3 A5 E3 C9 4C BO F3
4098- A9 58 85 E3 20 4C 93 20
49A0- CO 92 C6 E3 A5 E3 DO F4
4QA8- 20 83 92 20 4C 93 20 8D
40BO- 92 20 AC 92 4C 12 48

